
Plexiglass: Multiplexing Passive and Active Tasks
for More Efficient Crowdsourcing

Akshay Rao, Harmanpreet Kaur, Walter S. Lasecki
Crowds + Machine (CROMA) Lab | MISC Group

Computer Science & Engineering and School of Information
University of Michigan – Ann Arbor

{akshayro,harmank,wlasecki}@umich.edu

Abstract

Efficiently scaling continuous real-time crowdsourcing
tasks—which engage crowd workers over long periods of
time to complete tasks, such as monitoring video for critical
events—is challenging largely because of the cost of keep-
ing people consistently engaged. Worse, for many continuous
tasks on which progress cannot be immediately made, which
we term passive tasks, this engagement effort is wasted un-
til something becomes true about the environment (e.g., the
annotation of a critical event cannot happen until the event is
seen). In this paper, we present the idea of passive-active task
multiplexing, in which continuous tasks that involve waiting
for a change in state are completed concurrently with tradi-
tional (offline/non-real time) tasks. We then implement this
idea in PLEXIGLASS, a system that answers visual queries
made by blind and low-vision users more efficiently by con-
currently presenting a (passive) real-time sensing task and an
(active) offline visual question answering tasks to workers.
We explore different approaches to accomplishing this, and
validate that task multiplexing can lead to an improvement
in efficiency in these settings of more than 40% in terms of
overall worker time taken and 85% decrease in cost of run-
ning continuous real-time tasks. This work has implications
on how real-time crowdsourcing tasks are presented to work-
ers, and it increases the feasibility of deploying continuous
real-time crowdsourcing systems in real-world settings.

Introduction
Continuous real-time crowdsourcing tasks—those that re-
quire crowd workers to engage with a task on an ongoing
basis, rather than with a fixed-size task—solve an important
class of problems that have applications in domains ranging
from accessibility to interactive control to sensing and activ-
ity monitoring (Laput et al. 2015; Lasecki et al. 2014; 2011;
2013a; Salisbury, Stein, and Ramchurn 2015b). In many of
these tasks, a majority of the time is spent on waiting for a
state of the scene that allows actions to be taken (e.g., a per-
son must enter a scene before activity recognition labels can
be provided). We define these to be passive tasks.

Asking crowd workers to do continuous monitoring tasks
is prohibitively expensive because of the long term nature of
these tasks. In this paper, we study mechanisms for reduc-
ing the cost of a subset of these tasks: the passive ones that

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of task multiplexing. Some continuous,
real-time tasks (which we define as ”passive” continuous
tasks) can be completed along microtasks like the ones ubiq-
uitous on crowdsourcing platforms like Amazon Mechanical
Turk (e.g., image labeling).

require waiting for a future state to become active. We do
so by interleaving the passive continuous monitoring tasks
with an active stream of microtasks. For example, observ-
ing a live video stream to identify a certain event does not
require a worker’s full attention until a certain state of the
world arises (Salisbury, Stein, and Ramchurn 2015a). Crowd
workers can perform an active stream of microtasks while
passively observing the live stream for the required state.

We present PLEXIGLASS, a system that instantiates our
multiplexing approach (i.e., interleaving active and passive
streams of tasks) for answering visual questions for blind
and low-vision users. Visual question answering (VQA) sys-
tems can provide blind and low-vision users with better ac-
cess to the world around them by providing feedback on vi-
sual scenes via images or video. Unfortunately, automated
systems alone cannot robustly handle all user queries in real-
world settings because it requires an understanding of both
natural language and visual content. Prior systems, such as
VizWiz (Bigham et al. 2010) and Chorus:View (Lasecki et
al. 2013b), addressed this limitation by leveraging crowd
workers to quickly and reliably answer visual questions, but
these approaches do not scale for continuous monitoring
tasks. Using our approach, we are able to accurately answer

visual questions about a live video stream with 42.5% less
total human time, and an 85% reduction in cost. We discuss
the implications of this improvement in worker efficiency
for future crowdsourcing systems that aim to scale up pas-
sive continuous monitoring tasks in real-time deployments.

Envisioned Applications
We frame our discussion of task multiplexing and the PLEX-
IGLASS system around passive tasks in the domain of ac-
cessibility for people with visual impairments. Consider
Gabrielle, a visually impaired user visiting a remote of-
fice location that her company operates. The building is
equipped with experimental robot assistants that accompany
all visitors to help answer any questions they may have dur-
ing their stay. Gabrielle can navigate just fine on her own,
but wants to keep an eye out for her colleague, Jose, who she
believes may be in the same office today. Unfortunately, this
kind of distant visual search is impossible for Gabrielle, so
she makes a request to the personal assistant robot to let her
know if it spots her colleague. Automated computer vision
methods would need to be trained with significant amount of
data to recognize Jose, and even then, might not operate re-
liably in all settings (e.g., a new office building). The robot
thus hands this task off to the crowd – workers helping to
complete this task see a live video stream of what the robot
sees, and a profile picture drawn from Jose’s work profile.
The workers need to monitor the video feed for the specified
event, which may occur at any point throughout the span of
Gabrielle’s interaction with the robot assistant.

Our example above demonstrates a passive task because
crowd workers cannot respond affirmatively until they see
Jose in the video stream, and need not check anything in
the video unless at least some person is currently present
in it. More generally, many of these states are presented
as natural language queries currently not understood or ro-
bustly detected by automated approaches, so the crowd is
ultimately responsible for monitoring in these situations.
While ambient sensors powered by the crowd like the one
in our example have been proposed (Lasecki et al. 2013a;
Laput et al. 2015), this potentially high ratio of inactive, but
necessary, time on tasks makes such systems prohibitively
expensive. In our example, a set of workers may spend
most of their day keeping an eye out for Jose, costing $210
($10/hour * 7 hours/day * 3 workers) in the process. As a
result, such an application is infeasible in practice, even if
potentially helpful in making spaces more accessible.

The video monitoring application guides our initial exper-
iments, but our multiplexing approach is applicable broadly
to any task based on streaming media containing sparse
events. These include audio and text alert systems (e.g.,
airport notification screens); video processing (e.g., Closed
Circuit Television (CCTV) footage for criminal activity); au-
dio monitoring; or activity recognition as described above.
In most of these cases, the state being observed is not static.
That is, the event being monitored can change based on
the situation. Designing an automated system that detects
a general event does not work for these dynamic instances,
whereas crowds can monitor these media streams based on
any natural language query.

Related Work
Our work builds on previous research in crowdsourcing and
access technology. Most directly, we extend the literature re-
lated to crowd-powered sensing applications, and on the ef-
fects of interruptions and multitasking in crowd work.

Crowd-powered Sensing
Crowdsourcing has become a key method for powering
and training systems that aim to understand visual scenes.
Glance (Lasecki et al. 2014) and Legion:AR (Lasecki et al.
2013a) are crowd-powered tools that focus on recognizing
human behaviors in video inputs for gaining insights into
video and for real-time activity recognition. Zensors (La-
put et al. 2015) uses a similar set of approaches to not only
create crowd-powered visual sensors on-demand, but also
train computer vision systems during deployment to eventu-
ally automate it over time. Accessibility research has high-
lighted the potential of using crowd-powered sensing sys-
tems to create more powerful access technologies. For ex-
ample, VizWiz (Bigham et al. 2010) uses crowd-powered
sensing to answer visual questions for blind and low-vision
users in near-realtime. Adrenaline (Bernstein et al. 2011) ex-
plored methods for quickly recruiting workers to a task to
make these systems more responsive.

Continuous Crowdsourcing
In order to support more rich, on-going interaction, crowd-
sourcing has moved beyond traditional microtask settings
that leveraged discrete, context free units of work. Le-
gion (Lasecki et al. 2011) was the first system to enable
continuous real-time crowdsourcing tasks. Specifically, it al-
lowed end users to control their desktop via natural language
commands by handing off collective control of a user’s desk-
top interface to the crowd. Toolkits like LegionTools (Gor-
don, Bigham, and Lasecki 2015) have simplified the pro-
cess of organizing large, synchronous groups of workers
for experimental tasks, and have helped make such appli-
cations more common (Lasecki et al. 2014; Salisbury, Stein,
and Ramchurn 2015a; 2015b). Chorus:View (Lasecki et al.
2013b) leverages this model to improve access to the world
for people with visual impairments by having multiple work-
ers to engage in a continuous interaction with the user,
enabling more interactive (conversational) assistance that
can be as much as an order of magnitude faster than prior
(microtask-based) approaches to visual question answering.
Our work builds on the idea of continuous crowdsourcing
by introducing a method for interleaving active and passive
crowdsourcing tasks, thus enabling faster and more cost-
efficient continuous real-time crowdsourcing approaches.

Interruptions and Task Interleaving
Prior work has shown that interruptions can cause significant
disruptions to work (Cutrell, Czerwinski, and Horvitz 2001;
Czerwinski, Horvitz, and Wilhite 2004), and common prac-
tices in crowd work often incur similar penalties (Lasecki et
al. 2015). However, research has also highlighted the pos-
sible benefits of periodic interruptions during tasks that re-
quire passive levels of attention over long periods of time.

Figure 2: PLEXIGLASS worker interface for the Task
Switching condition. Workers periodically get an alert that
prompts them to check on the status of a video stream con-
taining potential events of interest.

Work by Cabon et al. (Cabon, Coblentz, and Mollard 1990)
on interruption of “monotonous” activity highlights how the
periodic inclusion of “sustained attention tasks” helps main-
tain the attention of individuals engaged in long “vigilance
tasks.” We explore a parallel idea, codified as “active” and
“passive” tasks within the context of crowd work.

More recent work has applied this idea in the context of
crowdsourcing. As more crowd-powered systems augment
automation, crowd workers are often engaged with streams
of similar, monotonous tasks. To that end, Dai et al. (Dai
et al. 2015) emphasize the benefits of “micro-diversions”
in improving worker retention rate. Similarly, Elmalech et
al. (Elmalech et al. 2016) studied the performance of crowd
workers as they completed video monitoring tasks (sifting
through CCTV footage), and found that the strategic inser-
tion of “dummy events” into a stream of video helped main-
tain worker attention over long periods.

As a result of the anonymous and remote nature of crowd
worker recruitment, expectations about crowd worker be-
havior are often unclear or hidden to requesters. For ex-
ample, workers may choose to multitask while completing
requests on platforms such as MTurk, either on multiple
MTurk tasks or with entertainment / social media outlets.
Since inattentiveness to tasks often leads to lower quality re-
sponses and lower productivity; some researchers have tried
to mitigate this through automatic interventions to encour-
age workers to stay on task (Gould, Cox, and Brumby 2016).
Our proposed approach focuses instead on encouraging mul-
titasking (which we relate to the idea of “multiplexing” from
the Electrical Engineering signals literature) in specific set-

Figure 3: PLEXIGLASS worker interface for the Picture-in-
Picture condition. Workers can monitor a video stream con-
taining potential events of interest in a small window em-
bedded within a larger interface for completing microtasks.

tings, with the goal of improving overall worker productiv-
ity. As we will see, how this is done has a significant impact
of worker performance.

PLEXIGLASS System
To explore task multiplexing, we created PLEXIGLASS, a
system that answers visual questions for blind and low-
vision users. PLEXIGLASS uses a modular architecture that
allows different active and passive tasks to be served us-
ing the same worker interface. For our experiments, we use
video for continuous passive tasks, and images with text
queries for offline active tasks.

System Design
The goal of PLEXIGLASS’s design is to allow crowd work-
ers to interleave multiple MTurk tasks while mitigating the
productivity costs associated with shifting attention between
items. Given our definitions of active and passive tasks, we
hypothesize that these two types of tasks leverage worker at-
tention in ways that don’t overlap: directly making progress
on a task vs. waiting for a cue to respond to. The majority of
our design decisions were made based on this principle.

The worker interface (Figure 2 and 3) presents workers
with the active task in the main window (left side) and
the passive task on the right. We make two assumptions:
(1) workers will be spending the majority of their time
and attention on completing active tasks while waiting for
events to happen in the passive task, and (2) workers are
used to processing tasks left-to-right (western ordering). The

Figure 4: Task Switching approach. Workers receive alerts
every 45 seconds to watch the video feed that they missed
since their last check. Workers may choose to speed up the
feed by 2x until they catch back up to the “live” position in
the stream. Workers may also ignore the alert – this caused
workers to spend an average of 95.4 seconds of extra time
(T extra) beyond the 8-minute (T base) video, despite be-
ing able to speed up parts of playback.

method for accessing the passive task (modality, window
configuration, etc.) can be tailored in our setup. In this paper,
we explore two different approaches to presenting multi-
plexed active and passive tasks: i) explicit interleaving (task
switching approach), and ii) simultaneously monitoring the
video and asking workers to complete active tasks at their
own pace picture-in-picture approach). These approaches
are presented in Figure 4 and Figure 5 respectively, where
the horizontal axis represents time spent on tasks, individual
boxes represent an individual (active) task, and groups of
boxes represent a continuous (passive) task. The interfaces
for each approach are shown in Figure 2 and 3. For each
of these approaches, our system is able to handle a wide
range of visual events, including those described as natu-
ral language queries. If we were to implement automated
approaches to aid workers in completing their tasks (e.g., a
system which alerts the worker when a face is in focus, or
when any movement is detected), these would be limited to
certain preset queries or events that can be robustly recog-
nized via automated approaches.

Task-Switching (TS) Approach
Our first approach allows workers to switch back and forth
between their active and passive tasks (interface: Figure 2,
approach: Figure 4). This is similar to what workers would
do if presented with both tasks in different MTurk HITs (sep-
arate accepted tasks). However, we improve on this interac-
tion in two ways: First, we remove the need to switch be-
tween tabs by embedding a link to the passive task on the
right side of the worker UI. We do not show live video di-
rectly in this panel to avoid distracting workers from their
main task. Second, we add the ability to speed up content to
“catch up” with the live stream that was missed while focus-

Figure 5: Picture-in-Picture approach. As workers complete
active labeling tasks at their own pace, a live video feed
plays within their sight, allowing them to notice and iden-
tify passive events in between. The worker is fully engaged
during the entire base video time (T base, 8 minutes).

ing on the active task. This is similar to the approach used
by TimeWarp (Lasecki, Miller, and Bigham 2013) to allow
groups of crowd workers to access delayed content while
decreasing latency on an audio captioning task.

Since this interface does not require the worker to watch
the video at all times, latency in response is to be expected.
To minimize this, we included an alert system that would
prompt workers to view sections of the video feed that they
had missed until that point. Workers were not required to
respond to the prompt every time, i.e., they could choose
to respond to the prompt in longer time intervals. The fre-
quency of alerts may be adjusted depending on the expected
engagement of the task. While the video presented was pre-
recorded footage, we simulated a live viewing by only al-
lowing workers to catch up to “present” time, relative to
when the video first began. Additionally, we had the workers
demonstrate their understanding of the use of the interface
before routing them to the task, to ensure that a failure to
identify passive events was not due to our setup.

Picture-in-Picture (PiP) Approach

Our second approach for task multiplexing is to show both
tasks simultaneously, with the video live streaming on the
right hand side of the worker’s UI and the self-paced active
task in the main (left) section (interface: Figure 3, approach:
Figure 5). PiP contrasts our TS approach by assuming that
distractions from the passive task are not problematic for the
active task. This assumption is reasonable largely because
our definition of passive tasks implies less activity / points
of interest will arise in the video (though not none). Workers
may choose to expand the video to full screen at any point,
in order to clarify specific details of an event (e.g., matching
the face of a target individual with the face of someone who
entered the video frame).

Study
We tested our system with crowd workers recruited from
Amazon Mechanical Turk. Workers were assigned to one of
the following experimental conditions: multiplexing active
and passive tasks using the TS approach or the PiP approach.
Our active tasks were self-paced visual Q&A tasks (simi-
lar to VizWiz (Bigham et al. 2010) questions). For example,
”Could you describe the pattern on this shirt?”, paired with a
corresponding photo. We did not change the ordering of ac-
tive task questions for different workers. Our passive tasks
were live-streaming videos of various situations in a mod-
ern office environment. While both of these tasks are in the
problem space of assisting blind and low-vision users, they
are representative of a broader subset of visual annotation
tasks and, more generally, a broader class of media stream-
ing tasks with sparse events being monitored.

We used two passive tasks in our experiments: a
numbering task and an identification task. The
numbering task asked workers to monitor a video feed
of a small meeting room, and update a counter of the current
number of people in the video frame as the video runs. The
state changed three times over the course of the video for
this task. For the identification task, workers moni-
tored a video feed of the entrance to a room, through which
people walk in and out. They were given a profile picture of
one of these individuals, and were told to hit a button when-
ever they see this particular person enter or exit the room. In
our video, five people enter and exit, only one of whom was
the target person.

We limit active tasks to 8 minutes of work time to match
the 8-minute video clip in our passive task. This length was
chosen to provide workers with enough time to familiarize
themselves with the task setting, and participate for long
enough that their attention may drift (short tasks; workers
are unlikely to miss content due to novelty effects). For both
task types, we set the time between video alerts in our TS
approach to 45 seconds. This was chosen to be well shorter
than the time between events in our test cases, while still al-
lowing the worker enough time to focus on completing mi-
crotasks. For both these values, we expect the specific setting
to have little or no effect on worker performance.

Baselines
Our first baseline offers workers a traditional UI to com-
plete active or passive tasks in isolation, which we name
the active-only and passive-only conditions. This
baseline recreates sequential completion of each task sepa-
rately, meaning that the overall completion time will be ap-
proximately twice the individual completion time (depend-
ing on the pace of active task completion).

Multi-Window Approach In addition to administering
tasks in isolation, we consider the case where workers com-
plete tasks concurrently by opening multiple browser win-
dows (the Mult condition). Similar to the payment scheme
introduced in the retainer model (Bernstein et al. 2011), this
method reduces costs for the requester by adjusting payment
to reflect the lower effort required by the worker. For exam-
ple, Bernstein et al.’s Adrenaline paid $1-2/hr for a task that

required no work until a specific time, at which it required
completion of a short task. In response, workers were al-
lowed to complete multiple tasks at once to earn a more rea-
sonable wage. We simulated this condition by placing two
tasks in separate browser windows—one active task win-
dow and one passive task window—and requiring workers
to complete both at the same time.

Measures of Success
For active tasks, we measure performance as the num-
ber of tasks completed in the 8-minute window. For the
numbering passive task, workers need to correctly update
a value three times over the duration of the video, each at the
time the specified event occurs. We define a successful event
identification as a correct answer within a 10 second window
of the event occurring in the video. We chose this as an a rea-
sonable real-time response upper-bound for our application
domain. We calculate worker accuracy as a ratio of events
successfully identified out of a total of three event occur-
rences. For the identification passive task, workers
need to successfully identify the target individual entering
the frame the one time it happens during the entire video.
The outcome is binary: the worker can either succeed or fail
at this task (93% of workers who eventually succeeded, suc-
ceeded within this bound). Our definition for success for this
task assumes the same ±10 seconds rule stated above.

Hypotheses
We designed our study to evaluate two hypotheses:

HActivePerformance: Crowd workers using a multiplexed
method will perform as well as workers in the control group
at completing active tasks, measured by the number of la-
beling tasks completed over 8 minutes. The Mult baseline
will be the primary comparison case for this hypthothesis.

HPassivePerformance: Crowd workers using a multi-
plexed method will identify events in the passive tasks (ei-
ther numbering or identification) with similar ac-
curacy as those in the control group, in terms of a ratio of
events identified to events occurred. The active-only
and passive-only baselines are significant for this hy-
pothesis, since we would expect optimal performance when
the worker is only given one task to focus on.

Results
We compare the time it takes to complete active and pas-
sive tasks using our TS and PiP multiplexing approaches to
active-only and passive-only individual baselines
and the Mult baseline. All significance testing is done using
two-tailed, paired t-tests with a threshold of α = 0.05/3 =
0.0169 (using Bonferroni correction). Figure 6 compares the
number of active tasks completed in our baseline conditions
and our multiplexing approaches, and Figures 7- 8 compare
passive task accuracy across these conditions.

Individual Baselines
In our active-only individual baseline, workers com-
pleted an average of 40.19 tasks (SD = 14.82, N = 21).

Figure 6: Number of active tasks completed for all conditions. For PiP, TS, and Mult approach, active tasks are completed in
combination with either Numbering passive tasks (N) or Identification passive tasks (I).

For passive-only individual baseline, workers success-
fully identified an average of 86% (SD = 22%, N = 14) of
events for the numbering task with an average latency of
4.19 seconds (SD = 0.64), and 71% workers (SD = 2.7,
N = 35) successfully identified the target individual in the
identification task with an average latency of 3.83
seconds (SD = 0.51).

Multi-Window Baseline
In the Mult baseline, workers completed an average of
25.7 active tasks (SD = 11.8) with the numbering
passive task, and 23.1 active tasks (SD = 10.5) with
the identification passive task. For the numbering
passive task, workers identified 57% of events (SD = 30%,
N = 14) with an average latency of 7.84 seconds (SD =
1.36), and for the identification task, 64% of work-
ers successfully identified the individual (SD = 1.8%,N =
14) with an average latency of 4.79 seconds (SD = 0.94).

Multiplexing: Task Switching
When multiplexing using the TS approach, workers com-
pleted an average of 23.9 active tasks (SD = 13.4) with the
numbering passive task, and 20.2 active tasks (SD = 7.3)
with the identification task (Figure 6). Workers us-
ing this approach complete significantly less active tasks
than the active-only baseline (p > 0.001 when com-
bined with both numbering and identification passive tasks),
but there is no significant difference compared to the Mult
baseline (p > 0.7 with numbering passive task and p > 0.3
with identification passive task).

For multiplexed passive tasks, workers successfully iden-
tified 90% of events (SD = 16%, N = 13) for the
numbering task with an average latency of 8.79 sec-
onds (SD = 1.42), and 90.5% (SD = 1.3, N = 21)
workers were successful in identifying the individual for

the identification task with an average latency of
6.87 seconds (SD = 1.05) (Figures 7-8). Compared to
the passive-only individual baseline, there was no sig-
nificant difference in the performance for numbering or
identification tasks (p > 0.5 and p > 0.09 re-
spectively). Compared to the Mult baseline, TS approach
is significantly better for numbering tasks (p > 0.002)
and not significantly different for identification tasks
(p > 0.06).

Multiplexing: Picture-in-Picture
When multiplexing active and passive tasks using the
PiP approach, workers completed an average of 34 active
tasks (SD = 8.78) when paired with the numbering
task, and 31.5 active tasks (SD = 10.1) with the
identification task (Figure 6). Compared to the
active-only baseline, PiP approach performed signifi-
cantly worse for active tasks paired with the numbering
task (p > 0.1), and significantly worse when paired with
the identification task (p > 0.04). There is also a
near-significant improvement when using the PiP approach
compared to Mult (p > 0.04 for both passive tasks). In
addition, we found that workers in the numbering task
kept the video in “expanded” mode for about 15% (SD =
9%) of the entire task completion time, while workers in
identification kept the video expanded for 28% of
the time (SD = 12%).

On comparing the two multiplexing approaches with one
another in terms of active task completion, we find that
the PiP approach does not perform significantly different
than the TS approach when paired with the numbering
passive task (p > 0.02), and significantly better with
identification passive task (p > 0.001). The dif-
ference in our multiplexing approaches implies that explic-
itly separating workers’ attention between active and passive

Figure 7: Performance in the Passive Numbering task
is measured as a ratio of events successfully identified out of
total event occurrences.

tasks (TS approach) does not work as well as allowing them
to control what they want to pay attention to by placing tasks
side-by-side (PiP approach). Further, PiP approach’s perfor-
mance is comparable or better than either baseline, confirm-
ing HActivePerformance.

For multiplexed passive tasks in the PiP approach, work-
ers successfully identified 79% of events (SD = 22%,
N = 13) for the numbering task with an average latency
of 7.24 seconds (SD = 1.19), and 90% (SD = 1.3, N =
20) of workers were successful in identifying the individual
for the identification task with an average latency
of 4.26 seconds (SD = 0.75) (Figures 7-8). Compared
to the passive-only individual baseline, there was no
significant difference in the performance for numbering
or identification tasks (p > 0.4 and p > 0.10 re-
spectively). Compared to the Mult baseline, PiP approach
is significantly better for numbering tasks (p > 0.005)
and not significantly different for identification tasks
(p > 0.07). Performance between the two approaches is also
not significantly different for both passive tasks (p > 0.15
for numbering task, p > 0.9 for identification task).

Comparing all passive task performances
(HPassivePerformance), event recognition accuracy
does not decrease among the four testing groups (individual
baselines, Mult, TS, and PiP) – it is either comparable or
significantly better when using multiplexing approaches.
This implies that despite dividing their attention between
watching a continuous video stream and answering visual
questions, workers in multiplexing conditions are able to
identify events at the same level of accuracy as those who
only needed to watch the video as the primary task. The data
does indicate the possibility of workers in both multiplexed
instances performing better than the baseline, but this effect
is not always significant. One potential reason for this
improvement could be that in multiplexing conditions, the
active tasks act as ”micro-diversions” that maintain worker
attention and engagement for the multiplexed passive task.
Further research is required to confirm this hypothesis.

Figure 8: Performance in the Passive
Identification task is measured as the number
of correct identifications made across all tasks. Given that
this identification event is binary, the number also reflects
the percentage of workers that accurately did the task.

Summary
Our results show that the PiP multiplexing approach signifi-
cantly outperforms all baselines on active tasks. Further, this
improvement does not come at the cost of accuracy on pas-
sive tasks – we have comparable passive task performance
to the best-case baseline. For active tasks, there is a 42.5%
decrease in total worker time with PiP approach compared
to completing the individual baselines concurrently (which
takes 16 minutes in total). For the passive tasks, PiP ap-
proach has comparable recall rate to the passive-only
baseline and performs significantly better than Mult base-
line (Figures 7- 8). Since we can do comparably well in
terms of passive task monitoring while completing 34 ac-
tive tasks in parallel, we get an effective cost reduction of
85% (34/40) on our passive task when using PLEXIGLASS.
Thus, our previously calculated cost of $210 for a 7-hour
video monitoring task may be reduced to ∼$42. While we
only demonstrated these cost-savings for a particular com-
bination of microtasks and video monitoring, our approach
generalizes to other streaming media settings with sparse
events, providing a means of drastically reducing the cost
of continuous crowd-powered systems.

Our first hypothesis that crowd workers using a multi-
plexed method will perform as well as workers in the base-
line groups (HActivePerformance) is confirmed by our find-
ings for active tasks with PiP approach. Our second hypoth-
esis, HPassivePerformance, which states that crowd workers
using multiplexed methods will identify events in passive
tasks with a similar level of accuracy as the baselines is also
confirmed using the PiP approach – we see comparable or
better performance for both metrics.

Discussion
Our results suggest task multiplexing can improve crowd
worker productivity for passive continuous tasks despite the
presence of (typically-detrimental) workflow interruptions.

Prior work has repeatedly demonstrated that workflow in-
terruptions can have a significant negative effect on over-
all productivity (Czerwinski, Horvitz, and Wilhite 2004;
Iqbal and Horvitz 2007), including in crowdsourcing set-
tings (Lasecki et al. 2015). However, unlike prior work,
our work targets a newly-defined category of tasks—passive
continuous tasks—and shows that these tasks are amenable
to a form of task interleaving (multiplexing) that we would
expect to be distracting in other settings. The dramatic re-
duction in task cost we present above can have an important
affect on where continuous crowdsourcing can be applied.
In our earlier example with Gabrielle, this improvement re-
duces the operating cost of keeping an eye out for Jose in the
building from $210 to just $42.

Of course, our approach does not present a perfect solu-
tion to scaling continuous crowd tasks. Paying nearly $42
for our example visual search application still prevents the
approach from being feasible for someone with a visual im-
pairment funding their own access technology. However, it
does take a large step (over 85% savings) towards this goal.
Further, as a result of this improvement, companies and large
organizations may now be able to afford to provide visual
question answering support via a tool like PLEXIGLASS.
Our core approach works for general combinations of crowd
tasks and can be re-used in future systems that may even
design complementary ways to further improve efficiency.

Future work may explore how to further optimize meth-
ods for multiplexing tasks, such as varying the frequency
of interruptions in order to benefit more from “breaks” af-
ter long spans (Dai et al. 2015). Knowing that interruptions
could improve productivity on long-running, monotonous
tasks, creates a well-defined space within crowdsourced
work for a multiplexing method with interruption frequen-
cies tailored to maximize worker engagement. Additionally,
providing more intuitive control over the multiplexing in-
terface and characterizing worker performance on different
combinations of tasks holds the promise of creating a broad
set of design guidelines for system designers. We hope our
work sparks considerable future work in this area.

Finally, PLEXIGLASS serves as a model for systems that
aim to help crowd workers maximize their own productiv-
ity as well as their community’s. After accepting a task, a
worker could annotate it as “passive” and the system can
help quickly find other (compatible) tasks for the worker to
complete in unison. This serves to help the worker increase
their effective pay rate, while also providing an annotation
that can be shared with the broader community of crowd
workers to help others benefit from this knowledge as well.

Conclusion
In this paper, we have presented an approach that lets us im-
prove the efficiency of completing passive crowd tasks by
adding active tasks that can be completed in parallel. Be-
cause passive tasks are characterized by waiting on a pend-
ing state of the world (a sparse event), they often do not re-
quire the same continual attention that active tasks do. We
implemented our solution in PLEXIGLASS, a system that
multiplexes passive and active visual questions from people

with visual impairment. In PLEXIGLASS, answering contin-
uous passive tasks costs requesters (end users) >85% less
than traditional systems would, with a 40% reduction in
overall worker time spent. Our work is the first to explore
and define passive tasks, and presents approaches that we
hope will open new lines of work on making continuous
crowdsourcing systems more efficient by thinking about the
broader ecosystem of tasks and how they can be considered
jointly for mutual benefit.

Acknowledgements
We would like to thank Stephanie O’Keefe, Gaole Meng,
Zihan Li, Tianle Lu, Sinmisola Kareem, Ashley Foster,
Clement Sutjiatma, and Varun Kutirakulam for their valu-
able input throughout this work. We also thank the reviewers
for their feedback; and finally, all of our study participants
for their help. This work was supported in part by Mcity, the
Toyota Research Institute, and the University of Michigan.

References
Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger, D. R.
2011. Crowds in two seconds: Enabling realtime crowd-
powered interfaces. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, 33–
42. ACM.
Bigham, J. P.; Jayant, C.; Ji, H.; Little, G.; Miller, A.; Miller,
R. C.; Miller, R.; Tatarowicz, A.; White, B.; White, S.; et al.
2010. Vizwiz: nearly real-time answers to visual questions.
In Proceedings of the 23nd annual ACM symposium on User
interface software and technology, 333–342. ACM.
Cabon, P.; Coblentz, A.; and Mollard, R. 1990. Interrup-
tion of a monotonous activity with complex tasks: effects of
individual differences. In Human Factors Society.
Cutrell, E.; Czerwinski, M.; and Horvitz, E. 2001. Notifi-
cation, disruption, and memory: Effects of messaging inter-
ruptions on memory and performance. In Proc. INTERACT,
263–269.
Czerwinski, M.; Horvitz, E.; and Wilhite, S. 2004. A diary
study of task switching and interruptions. In Proceedings
of the SIGCHI conference on Human factors in computing
systems, 175–182. ACM.
Dai, P.; Rzeszotarski, J. M.; Paritosh, P.; and Chi, E. H.
2015. And now for something completely different: Im-
proving crowdsourcing workflows with micro-diversions. In
Proceedings of the 18th ACM Conference on Computer Sup-
ported Cooperative Work & Social Computing, 628–638.
ACM.
Elmalech, A.; Sarne, D.; David, E.; and Hajaj, C. 2016.
Extending workers’ attention span through dummy events.
In Fourth AAAI Conference on Human Computation and
Crowdsourcing.
Gordon, M.; Bigham, J. P.; and Lasecki, W. S. 2015. Le-
giontools: a toolkit+ ui for recruiting and routing crowds to
synchronous real-time tasks. In Adjunct Proceedings of the

28th Annual ACM Symposium on User Interface Software &
Technology, 81–82. ACM.
Gould, S. J.; Cox, A. L.; and Brumby, D. P. 2016.
Diminished control in crowdsourcing: an investigation of
crowdworker multitasking behavior. ACM Transactions on
Computer-Human Interaction (TOCHI) 23(3):19.
Iqbal, S. T., and Horvitz, E. 2007. Disruption and recovery
of computing tasks: field study, analysis, and directions. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, 677–686. ACM.
Laput, G.; Lasecki, W. S.; Bigham, J. P.; Wiese, J.; Xiao, R.;
and Harrison, C. 2015. Zensors: Adaptive, rapidly deploy-
able, human-intelligent sensor feeds. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems. ACM.
Lasecki, W. S.; Murray, K. I.; White, S.; Miller, R. C.; and
Bigham, J. P. 2011. Real-time crowd control of existing in-
terfaces. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, 23–32. ACM.
Lasecki, W. S.; Song, Y. C.; Kautz, H.; and Bigham, J. P.
2013a. Real-time crowd labeling for deployable activity
recognition. In Proceedings of the 2013 conference on Com-
puter supported cooperative work, 1203–1212. ACM.
Lasecki, W. S.; Thiha, P.; Zhong, Y.; Brady, E.; and Bigham,
J. P. 2013b. Answering visual questions with conversational
crowd assistants. In Proceedings of the 15th International
ACM SIGACCESS Conference on Computers and Accessi-
bility, 18. ACM.
Lasecki, W. S.; Gordon, M.; Koutra, D.; Jung, M. F.; Dow,
S. P.; and Bigham, J. P. 2014. Glance: Rapidly coding behav-
ioral video with the crowd. In Proceedings of the 27th an-
nual ACM symposium on User interface software and tech-
nology, 551–562. ACM.
Lasecki, W. S.; Rzeszotarski, J. M.; Marcus, A.; and
Bigham, J. P. 2015. The effects of sequence and delay on
crowd work. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems, 1375–
1378. ACM.
Lasecki, W. S.; Miller, C. D.; and Bigham, J. P. 2013. Warp-
ing time for more effective real-time crowdsourcing. In Pro-
ceedings of the International ACM Conference on Human
Factors in Computing Systems, 2033–2036. ACM.
Salisbury, E.; Stein, S.; and Ramchurn, S. 2015a. Crowdar:
augmenting live video with a real-time crowd. In Third AAAI
Conference on Human Computation and Crowdsourcing.
Salisbury, E.; Stein, S.; and Ramchurn, S. 2015b. Real-
time opinion aggregation methods for crowd robotics. In
Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, 841–849. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.

