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Abstract
Explainable Artificial Intelligence (XAI) provides tools to make
the behavior of AI models more interpretable, but these tools see
misuse in practice. Findings are mixed on whether XAI should be
personalized via characteristics such as demographics, personality,
and prior experience to address the misuse. We holistically studied
the effect of these characteristics on XAI use in an experimental
setting (N=149) in a manner orthogonal to recent prior work, en-
gaging with the limitations outlined in that work. While the linear
effects of separate categories of characteristics yielded similarly
scant results, our exploratory and qualitative analyses revealed rich
insights leading us to question the limited measurement approaches
conventional to this line of research. As such, we present this work
as a first step toward the more holistic, rigorous measurement of
user characteristics as they relate to XAI, outlining how future work
may extend even further beyond the limitations that have thus far
diffused the community’s collective research effort.

CCS Concepts
•Human-centered computing→ Empirical studies in HCI;
• Computing methodologies→ Artificial intelligence; Machine
learning.
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1 Introduction
Explainable AI (XAI) approaches are essential as we deploy AI
and ML models in sensitive domains such as criminal justice [2],
healthcare [52], and finance [20]. Many models are inherently un-
interpretable “black boxes” [23] that fail to meet the expectations
of transparency and accountability demanded in critical decision-
making contexts, an issue that is exacerbated by the tendency for
such models to perpetuate historical biases [2, 17]. In light of this
issue, XAI tools provide explanations of how black box models
arrive at the outputs they produce. SHapley Additive exPlanations
(SHAP) [40] and Local Interpretable Model-Agnostic Explanations
(LIME) [57] have emerged as the most popular of these tools, both
being model-agnostic and explaining how input features contribute
to model outputs.

However, a problematic gap persists between the intended and
actual use of XAI tools. Prior work has consistently discovered
instances of over-trust, inappropriate reliance, and a general lack
of calibration when XAI tools are tested in practice, across multiple
domains, contexts, and stakeholders [6, 9, 33]. Even data scientists
and ML practitioners, i.e., people with ML experience, have exhib-
ited misuse of these tools and a failure to understand them [34]. So
long as this gap exists, XAI will be unable to accomplish its goal of
promoting effective collaboration between people and AI.

Understanding this gap between intended and actual XAI use
is perhaps the most critical problem to address for this research
area. There have been two threads of research that seek to do so:
1) technical and design work grounded in theories from related
disciplines (e.g., cognitive [39], social [45], and organizational [32]
sciences) which are, for example, responsible for the introduction
of counterfactuals in XAI [75]; and 2) experimental work seeking
to investigate various human factors that affect human-AI decision-
making and XAI tool use in practice. The latter work has classi-
fied user characteristics that may impact the use of XAI tools and
decision-making outcomes based on cognitive (e.g., prior experi-
ence, literacy) and social (e.g., demographic, personality) factors.

Instead of adding clarity, experimental work on XAI use in prac-
tice has found mixed results on whether, which, and how user
characteristics have an impact. For instance, studies have found
evidence supporting [56] and refuting [68] the impact of gender on
XAI interaction. Some studies found that neither domain knowledge
nor knowledge about AI impacted performance in XAI decision-
making tasks [33, 34, 37], while other work claims otherwise [16].
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While results have indicated the significant impact of user charac-
teristics on XAI interaction in pedagogical [13] and entertainment
[43] domains, it is unclear whether these results translate from
learning-oriented and satisfaction-oriented XAI use into the critical
decision-making contexts that increasingly see AI integration.

Therefore, we experimentally studied user characteristics in a
holistic way. Recent prior work that took a similar approach did
not find any significant relationships between user characteristics
and engagement with an XAI tool, warning of the potential ”rabbit
hole of personalization” [49]. These results were unexpected given
the large history of prior work on personalization and real-world
applications that rely on it (e.g., recommender systems, algorithmic
curation). As such, we sought to verify their findings in a related
decision-making setting. We were able to engage with the limi-
tations outlined in their work [49] while designing our study to
further test the efficacy of their findings.

We conducted an experiment where we measured demographic,
personality, and AI experience characteristics of 149 participants
before having them engage in an AI-assisted decision-making task.
The key differences in methodology between our work and that
which we build upon [49] are that we took the opportunity to gather
more precise measures using validated scales and further explored
the nature of our participants’ reliance on our AI system by having
them complete the same task both with and without its assistance.

As with prior work, the linear modeling of user characteristics
failed to provide clarity to this research area, but the same was
not true for our exploratory and qualitative analyses. Our non-
linear models yielded intuitive results such as conscientiousness
predicting changes in confidence and an interaction effect between
neuroticism and hours of ML/XAI experience predicting changes
in how participants trust the AI system. Our qualitative analysis
revealed the key role that intuition plays in guiding XAI tool use,
where this intuition is derived from a variety of sources including
self-confidence, prior experience, and openness to new technology.
In this work, we extend beyond the norms of measurement for this
line of research and correspondingly extend beyond the limitations
that prevent us from capturing the complexity of user character-
istics, concluding with strategies for the research community to
pursue holistic and rigorous measuring practices.

2 Related Work
2.1 Interpretability, Explanations, and AI

Reliance
Many machine learning models are not inherently interpretable.
In the ML context, interpretability refers to a model’s “ability to
explain or to present in understandable terms to a human” [14].
The ethical usage of such models is determined in part by the abil-
ity for their behavior to be understood [72], with this need being
exacerbated in critical decision-making contexts such as health
care [52] and criminal justice [2]. While some models are designed
to be inherently interpretable glass-boxes (e.g. Generalized Addi-
tive Models[24], simple point systems [31], and decision trees[54]),
there are many models so complicated that they require external
explanations for users to understand their behavior. Those in the
latter class are called black-box models [23]. An ongoing debate

in the field of XAI considers whether black box models should be
used in critical settings at all [60].

Explainability tools serve to increase understanding of black-
box models. One popular post-hoc explainability tool is SHapley
Additive exPlanations (SHAP), which leverages Shapley Values
from cooperative game theory to explain how input feature values
correspond to model outputs at both a local and global level [40].
Another commonly used post-hoc approach, Local Interpretable
Model-Agnostic Explanations (LIME), relies on input perturbations
to explain model behavior [57]. Most explanation approaches pro-
vide local explanations showing how a specific model prediction
was made, and global explanations showing the model’s behav-
ior across all datapoints (e.g., as global feature importances and
dependence plots). Both SHAP and LIME are model agnostic, i.e.,
they can generate explanations for any model. For a comprehen-
sive overview of interpretability and explainability approaches, see
reviews by Gilpin et al. [19], Arrieta et al. [3] Liao and Varshney
[38], and Dwivedi et al. [15].

Explanations are often misused in practice and result in over-
reliance on models. Prior work has found that end users and even
data scientists rely on the presence of explanations to justify AI
outputs rather than scrutinize them [16, 34], an issue exacerbated by
information overload [36]. Prior work asserts that we have “inmates
running the asylum,” where explanations are designed by and for AI
researchers without accommodating end users [46]. In an attempt
to promote appropriate reliance on explanations, researchers have
taken inspiration from human-to-human explanation techniques,
drawing from theories in the social sciences to explore how expla-
nations should be delivered and what they should convey [32, 39,
42, 45]. Another thread of research seeking to mitigate this issue
investigates how user characteristics factor into XAI use, laying the
groundwork for personalized XAI tailored to user needs (see below).

2.2 XAI Personalization
Prior work has studied user characteristics such as age, gender, prior
experience with ML and XAI, AI literacy, and personality, and their
role in people’s understanding and processing of AI explanations.
We categorize these user characteristics and present an overview
of their (often contradictory) findings.

2.2.1 Demographics. In the personalization of XAI, the presen-
tation and design of explanations are tailored to the user, often
affecting the resulting explainability [3, 13]. Age is typically col-
lected during research studies, and it has been found that older
people, though not elderly, are more inclined to appropriately re-
view and comprehend XAI information [29, 49]. Similarly, Reeder
et al. [56] find that gender has a significant effect on user compre-
hension and preference for explanations, as an interaction effect
with prior experience in AI/ML; though results from [68] contradict
this. Gender has also been shown to be significant in the context of
interacting with AI and recommender systems more generally [35].

2.2.2 Experience. The two main dimensions of experience in XAI
studies are prior experience in AI/ML and domain knowledge. Here,
again, we find prior work with contradictory results. Experimental
work by [16, 56, 59, 73] suggests that prior experience in AI/ML can
improve appropriate reliance on model and explanation outcomes;
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similar studies presented in [6, 33, 34, 37] suggest otherwise. Sim-
ilar contradictions arise regarding domain knowledge, where some
work found it had a positive impact on XAI outcomes [11, 47] while
others found counterintuitively null results [37]. Prior experience
is considered significant in the realm of personalization and rec-
ommender systems, where those with prior experience possess the
domain knowledge necessary to complete tasks efficiently [41]. Fur-
thermore, different expertise levels have been shown to influence
comprehension of visual, textual, and hybrid explanations [47, 66].

2.2.3 Personality. An emerging user characteristic studied in the
context of personalized XAI is personality. Personality has been
known to affect perception and trust in AI systems [10, 59, 70]. Fur-
thermore, changes in the presentation of AI outputs can increase
perception and trust values [27, 62], with perception and trust be-
ing correlated with specific personality traits of the user [5, 13, 74].
The Big Five personality traits—extraversion, neuroticism, conscien-
tiousness, agreeableness, and openness—shape user preferences and
are essential for personalization [74]. Specifically, users’ preferences
for explanations may vary based on their individual differences,
such as openness and neuroticism. For example, individuals who are
more open to new experiences may find innovative AI explanations
easier to trust, while those with higher levels of neuroticism may
experience greater uncertainty in trusting AI systems [5]. However,
there has been limited research on how human personality itself
impacts how XAI is utilized beyond measuring trust in a decision-
making setting [13, 49]. This limited research is contradictory, and
is most closely related to our motivation and work.

2.2.4 Combined Models of User Characteristics. Stein et al. [64] in-
troduced the ATTARI-12 questionnaire, a validated tool to measure
general attitudes toward AI. This work highlights significant rela-
tionships between personality traits and attitudes toward AI. For
instance, individuals with higher agreeableness and younger age
demonstrated more positive attitudes toward AI, while those with
a greater susceptibility to conspiracy beliefs showed more negative
attitudes. This study provides evidence of the importance of per-
sonality in shaping perceptions of AI, though it focuses on general
attitudes rather than task-specific interactions with AI explanations.

On the other hand, Nimmo et al. [49] present an experiment
showing user characteristics like personality, demographic fea-
tures, and prior experience do not impact XAI use or outcomes. In
this study, users were given twenty minutes to classify as many
hate speech comments as possible with the help of an AI agent.
Prior to the task, the user’s personality was calculated using the
Ten-Item Personality Inventory (TIPI), a shorter version of the Big
Five Inventory (BFI) [30], the original 44 item questionnaire. They
also rely on subjective ratings of prior experience and trust, though
no validated scales are used for these. Nimmo et al. [49] carefully
consider these limitations of measurement already known in prior
work (e.g., [21, 58]), but ultimately suggest that user characteristics
might be a “rabbit hole of personalization.”

We build on this work by: (1) using validated scales to measure
all facets of user characteristics, with supplemental use of subjec-
tive ratings; and (2) measuring outcome metrics in a human-only
task baseline before having people re-do the task with AI, allowing
us to measure the change in behavior when using AI and directly
attribute it to user characteristics.

3 Methods
We conducted a two-part study to holistically measure and model
the impact of user characteristics on XAI outcomes. First, partici-
pants completed an intake survey answering questions about user
characteristics—demographics, prior experience, and personality—
on validated scales [25, 30]. Participants who answered the ML
literacy objective questionnaire in this intake with at least 50%
accuracy were then invited to complete the second survey, a clas-
sification task. For this main task, they predicted whether 8 data
points from the Adult Income census dataset [7] made more than
$50k annually. Participants first completed the task unassisted and
then repeated it with the help of an ML model and XAI tool. Our
setup and measures are described in detail below; Figure 1 provides
an overview. Our study design was approved by the University of
Minnesota’s Institutional Review Board (IRB).

3.1 Dataset and Datapoint Selection
We used the Adult Income dataset [7] for the main study task, a clas-
sification dataset based on 1994 census data used to predict whether
a person makes over $50k a year. The dataset has 48,842 instances
and 14 features including age, work class, education, marital status,
occupation, race, gender, capital gain, capital loss, hours per week,
native country, relationship, fnlgwt, and education num. Due to
duplicate information and un-interpretable columns, relationship,
fnlgwt, and education num were dropped from the dataset (this is
consistent with prior work that has used this dataset [26, 34]).

We selected 8 datapoints from this dataset for our study. These
specific data points were selected for two reasons. First, they were
near the decision boundary, i.e., points that were inherently am-
biguous for the ML model. This helped us capture people’s reliance
on the MLmodel without being confounded by its accuracy. Second,
of the many decision boundary datapoints, these 8 had meaningful
XAI explanation narratives (e.g., in one case, the sole deciding factor
was being in a single-parent household). We anticipated that these
narratives would be more engaging for task participation. In terms
of model accuracy on these datapoints, half of the predictions (4/8)
were accurate. We selected datapoints to have a balanced represen-
tation of prediction classifications and accuracy, selecting pairs of
false positives, false negatives, true positives, and true negatives.

3.2 ML Model and Explanation Approach
We trained a LightGBM classifier to predict whether an individual
makes over $50k a year. For modeling, categorical features were
preprocessed through one-hot encoding, and a binary log-loss func-
tion was used to optimize the model at each iteration. We selected
LightGBM for its efficiency, ability to handle categorical data, and
robust performance on structured datasets. The model reached an
accuracy of ∼88% on both the training and test sets, leaving room
for participants to question its classifications.

We chose SHapley Additive exPlanations (SHAP) [40], a widely
used post-hoc method for interpreting ML outputs, to explain our
model. The use of SHAP allows for direct comparison to the abun-
dance of prior work that utilizes it [4, 33, 48, 55], and its visuals are
common across most XAI tools (e.g., bar plots for global and local
explanations, scatter plots to represent dependence), increasing the
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generalizability of our findings. We used the Python implemen-
tation of SHAP to generate our explanations. For each of our 8
datapoints, a local SHAP waterfall plot was created to visualize the
predicted f(x) value and how different features contributed to the
classification of income as either less than or greater than $50k.
These visualizations provided a breakdown of positive and negative
contributions of the features to the predicted outcome, allowing
participants to identify key factors influencing each prediction. An
example of the SHAP waterfall plot can be found in Appendix D.5.

3.3 Study Task
The study consisted of two phases: an intake survey for capturing
user characteristics and a main study survey for the experiment,
both detailed below. Participants completed these phases individu-
ally since the intake survey measured our inclusion criteria. Both
surveys were designed using Qualtrics and administered on Prolific.

3.3.1 Intake Survey. After providing consent, participants provided
three sections of intake information related to user characteristics.
The first section gathered demographic information including gen-
der, age, and education. Additionally, questions were asked regard-
ing: the participant’s occupation and whether it included ML tasks;
their proficiency in ML and interpretability tool use; how much
time (estimated) they spent on ML and interpretability tasks. The
second section assessed the participants’ personality traits using
the Big Five Inventory comprised of 44 items [30]. The BFI scale
remains the most widely used taxonomy of human personality for
several decades: it is known for capturing these traits using a rea-
sonable number of questions [64] and sees use in prior work on
user characteristics and XAI [13, 49]. The final section evaluated
people’s expertise in AI/ML using Hornberger et al. [25]’s literacy
questionnaire. This questionnaire provides an objective accuracy-
based measure of literacy based on 31 multiple-choice questions.
To reduce task burden on intake survey participants, we modified
the questionnaire and included 10 of the 31 questions under the
categories of: building blocks of an ML pipeline (e.g., types of data
and models), data science concepts (e.g., preprocessing, overfitting),
and ethical issues (e.g., bias, representation). Completion of the in-
take survey took approximately 10 minutes, and participants were
compensated with $2 on Prolific. Additional details on the intake
survey materials are available in Appendix C.

3.3.2 Main Study. Intake participantswhomet the inclusion criteria—
being 18 years or older, residing in the U.S., and achieving a mini-
mum score of 50% on theML literacy scale—were invited to themain
study. Figure 1 presents an overview of all study components. This
study took approximately 20 minutes to complete, and participants
were compensated with $5 upon completion.

First, the study task was introduced as follows: “You will predict
whether individuals earn less than or greater than $50,000 based on
information provided about their demographics and work history.”
To facilitate familiarity with the task, participants completed a prac-
tice task involving four example datapoints. When a participant
made their prediction about income for these datapoints, the correct
answer was automatically displayed. This setup was intended to
help familiarize them with the dataset features (always presented
as a table), and the survey interface and format of the main task.

Following the practice round, participants proceeded to the main
task, where they were presented with 8 data points from the Adult
Income dataset. For each data point, they predicted whether the
individual earned less than or greater than $50k based solely on a
table of feature information, i.e., no ML assistance was provided
at this point. They also noted their self-confidence about each
classification on a scale of 0–6 (not at all to extremely confident). We
did not have participants make classifications with ML assistance
during this task for two reasons: first, legislation such as the EU AI
Act [71] increasingly requires explanations for black-box models
involved in decision-making, making an ML-without-explanations
condition less relevant; secondly, we wished to capture participants’
baseline decision-making behavior influenced by nothing but their
user characteristics—displaying the ML predictions at this stage
would have interfered with that behavior.

Next, we asked participants to classify the same datapoints with
ML assistance and SHAP explanations. Before they did so, they com-
pleted Jian et al. [28]’s trust questionnaire after reading a tutorial
on the AI system to establish a baseline of their trust in the system,
where the questionnaire broadly defined AI and equally balanced
positive and negative statements. For these ML-assisted classifi-
cations, we provided the model’s prediction alongside a SHAP
waterfall plot that explained the factors influencing the prediction.
For each datapoint, participants selected a classification, rated their
self-confidence on the same scale as before, and also rated their
confidence in the ML prediction being accurate (scale 0–6). After
completing the ML-assisted classification, participants answered
the trust questionnaire again, allowing us to observe any change in
trust after concrete experience with the system used in our study.
Finally, participants explained their decision-making for both unas-
sisted and ML-assisted classification tasks via open-text responses.
Details on the main study materials are available in Appendix D.

3.4 Participants and Data
Our surveys were administered as Prolific studies. We collected
responses from 252 participants for our intake survey. Of these,
149 met the inclusion criteria—being 18 years or older, residing in
the U.S., and achieving a minimum score of 50% on the ML literacy
test—and completed the main study. Participant ages ranged from
18 to 66 (median=33). There were 69 male participants, 77 female
participants, and 3 non-binary participants. Approximately 69% of
participants had completed some form of college education (Asso-
ciate’s degree and beyond) and 31% held college credit or attended
vocational school. Their job roles ranged from IT professionals and
project managers to nurse practitioners and more.

3.5 Variables of Interest
Our goal was to model XAI outcomes based on user characteristics.
We describe our independent variables collected via the intake
survey and dependent variables measured during the main task.

3.5.1 Independent Variables.

(1) Demographics. Age, gender, and education level.
(2) Experience. Included four aspects of experience: (a) sub-

jective ratings of the extent to which ML is a part of par-
ticipants’ job roles, (b) subjective ratings of both ML and
interpretability knowledge, (c) estimates of hours spent on
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Figure 1: Overview of the study task flow. Orange boxes are associated with the intake survey. The pink and purple boxes
signify the main study: pink boxes represent classification tasks and purple boxes represent points of subjective data collection.

both ML and interpretability tasks, and (d) accuracy on a
modified 10-question objective ML literacy scale [25]. Given
conceptual and scale similarity in the two questions asked
under (b), we averaged the questions into one value repre-
senting prior experience with ML and interpretability. We
verified their internal consistency using Cronbach’s alpha
before averaging them; the alpha was > 0.7, which is the
accepted norm for merging values [33, 50]. The ML and inter-
pretability questions under (c) underwent a similar process,
resulting in an hours estimate rating representing both ML
and interpretability.

(3) Personality. Scores for the five personality dimensions [30]—
extraversion, agreeableness, conscientiousness, neuroticism,
and openness—scaled to a range of 0–1. Extraversion reflects
sociability and energy; agreeableness represents tendencies
toward cooperation and trust; conscientiousness indicates
organization and self-discipline; neuroticism encompasses
emotional instability and sensitivity to stress; and openness
describes curiosity and receptivity to new experiences.

3.5.2 Dependent Variables.

(1) Prediction Changes: Participants were tasked with clas-
sifying eight datapoints as either income ≥ $50𝑘 or < $50𝑘
without AI assistance. They then classified the same eight
datapoints (without being made aware they were the same
set of datapoints) with AI assistance and explanation plots.
This metric represents the number of instances (0–8) where
participants altered their initial predictions after reviewing
AI classifications, calculated as a percentage.

(2) Average Change in Confidence: For each prediction, par-
ticipants indicated their level of confidence in their answer
on a scale of 0–6. By comparing their first confidence rating
of a given datapoint to their second, this value indicates how
their level of confidence changed with the inclusion of XAI.

(3) Change in Trust: Participants completed a trust question-
naire both before and after interacting with the ML model
and XAI outputs for the task. This questionnaire used a val-
idated trust scale by Jian et al. [28]. The change in trust was
calculated as the difference between the post-ML interaction
and pre-interaction trust scores.

(4) Inappropriate Reliance: To measure participants’ reliance
on the ML and XAI outputs, we calculated the number of
instances (0–8) where participants over- or under-relied on
the AI during the classification task. Over-reliance occurred
when participants changed an initially correct classification
into an incorrect one to be consistent with the AI. Under-
reliance was when participants did not change an initially
incorrect classification despite the AI output being correct.

(5) Average Confidence in AI: For each AI-assisted prediction,
participants indicated their level of confidence in the ML and
XAI outputs on a scale of 0–6.

3.6 Analysis Methods
We conducted correlation analysis and statistical modeling for our
variables of interest. We initially modeled our dependent variables
using individual models for each of our independent variables: de-
mographics, experience, and personality. More complex modeling
using hierarchical approaches and non-linear models was also per-
formed. We present these model decisions in the Results section to
capture our process in picking models based on iterative results.

Our open-text data from the post-study questionnaire captured
participants’ reasoning behind classifications, both with and with-
out AI assistance. We analyzed this data using Braun and Clarke
[8]’s inductive thematic analysis approach. Two authors open and
axial coded all the data, and all authors analyzed these to iden-
tify final themes. To quantify interesting themes from participants’
reasoning processes, we also converted select axial codes into bi-
nary variables and computed correlations with other independent
variables using Point-Biserial tests.
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4 Results
4.1 Descriptive Statistics and Correlations
On average, participants in our sample leaned towards being moder-
ately extroverted (𝜇=0.59, 𝜎=0.16; scale=0–1) and neurotic (𝜇=0.55,
𝜎=0.17); and more agreeable (𝜇=0.70, 𝜎=0.13), conscientious (𝜇=0.75,
𝜎=0.15) and open (𝜇=0.77, 𝜎=0.14). In terms of prior experience,
the statistics were as follows: extent of ML in role (𝜇=2.68, 𝜎=1.89;
scale=1–7), subjective rating of experience in ML and interpretabil-
ity (𝜇=2.57, 𝜎=1.38; scale=1–7), hours-based estimate of experience
in ML and interpretability (𝜇=2.02, 𝜎=1.14; scale=1–7), score on
objective ML literacy scale (𝜇=6.46, 𝜎=1.63; scale=0–10).

Table 1 presents correlation coefficients and significant results
from running Spearman’s rank correlation analyses for our predic-
tors. Among the personality facets, neuroticism was significantly
negatively correlated with other personality variables. Interestingly,
agreeableness and conscientiousness were highly positively cor-
related, though they normally represent different perspectives on
a spectrum of skepticism in individuals. The experience variables
were significantly correlated.

Given several significant correlations, we also computed vari-
ance inflation factors (VIFs) for all predictors to check for multi-
collinearity, ensuring all retained variables were within acceptable
thresholds of <5 (min=1.2, max=4.3).

The descriptive statistics for our dependent variables are: aver-
age prediction changed (𝜇=0.34, 𝜎=0.21; scale=0–1), inappropriate
reliance (𝜇=0.22, 𝜎=0.14; scale=0–1), average change in confidence
(𝜇=-0.01, 𝜎=0.69; scale=-6–6), average confidence in AI (𝜇=3.48,
𝜎=0.92; scale=0–6), and change in trust (𝜇=3.01, 𝜎=8.66; scale=-72–
72, with 72 being the maximum possible score on the trust scale).

4.2 Linear Models for User Characteristics and
XAI Outcomes

User characteristics have primarily been modeled using linear ap-
proaches before, andwe followed the same anticipated relationships.
As such, we first fit linear models (LMs) for individual user charac-
teristics and each of our dependent variables (DVs). However, LMs
assume that residuals are normally distributed, which we verified
was not the case for some of our data by examining the Q-Q plots
of the residuals for each DV. For the dependent variables Average
Change in Confidence, Change in Trust, and Average Confidence in
AI, the Q-Q plots indicated that the residuals were approximately
normal; i.e., LMs were appropriate for these.

We next tested Generalized Linear Models (GLMs) for our non-
normal DVs (Average Predictions Changed and Inappropriate Re-
liance), since GLMs relax the normality assumption of residuals
and allow for a broader range of response variable distributions.
We modeled our non-normal DVs as Gamma distributions with
a log link function. This distribution provided the best fit for the
majority of our DVs, as it is suitable for right-skewed, non-negative,
continuous outcomes where the variance increases with the mean
(homoscedasticity), and we avoid issues regarding learning effects
that would be present with count-based model families.

We also assessed the presence of influential outliers by calcu-
lating Cook’s distance for each observation. Observations with
Cook’s distance greater than 1 are typically considered candidates

for removal. No such observations were identified in our data, so
all data points were retained for analysis.

By using LMs for normally distributed residuals and Gamma
GLMs for right-skewed distributions, and by confirming no undue
influence from outliers, we ensured that each DV was modeled with
the most suitable framework, allowing us to accurately capture the
relationships between predictors and outcomes.

4.2.1 Individual Model Results. Modeling the relationships using
the process above for one set of user characteristics—demographics,
experience, and personality—at a time did not yield significant re-
sults for any of our predictors. It is worth noting two caveats here. 1)
A few intercepts were significant for our experience-characteristics
model: confidence in AI (F(4,144)=2.99, p<0.05) with an estimated
coefficient of 2.68 (SE=0.31), prediction changed, and inappropri-
ate reliance, although the latter two accounted for minimal re-
duction in deviance for their respective models. These significant
intercepts suggest that everyone, regardless of prior experience
predictors, tended to have positive values for confidence in AI. 2)
Gender showed a marginally significant effect on change in trust
(F(4,144)=2.36, p=0.05). The estimated coefficient was 3.25 (SE=1.45).

4.2.2 CombinedModel Results. While our sets of predictors showed
minimal predictive power on their own, additional significances
became evident once different sets of predictors were combined
in a hierarchical fashion. We assessed demographic+personality
and demographic+experience models, in addition to a full model
that included predictors from all user characteristics. Summaries
of those full models can be found in Appendix A. This exploration
demonstrated that accuracy on the objective ML literacy scale sig-
nificantly impacted confidence in the AI (F(8, 140)=2.36, p=0.021)
with a coefficient of 0.1 (SE=0.04). Additionally, several of these
models indicated significant results associated with the gender of
non-binary datapoints for confidence in AI, but we believe these
to be an artifact of class imbalance given the small amount of non-
binary datapoints. Finally, the intercept became significant for the
change in trust model when demographic and experience predic-
tors were both included (F(8,140)=2.497, p<0.05) with a coefficient
of -9.43 (SD=4.06), suggesting a general reduction in trust after
participants interacted with the AI.

4.3 Exploratory Analysis
Thus far, our modeling approach has followed the same assump-
tions as prior work with regards to user characteristics as predictors
for XAI outcomes. This was effectively our validation check for
the results of these previous studies. However, we were interested
in exploring more nuanced modeling approaches for this type of
data given that prior work has contradictory results regarding user
characteristics’ impact on user behavior, both in XAI and other
fields (see Section 2.2). Therefore, while our modeling results so far
confirmed some prior findings (e.g., [49]), in doing so, they refuted
other findings (e.g., [37, 64]). This made us question our assump-
tions about the relationships being considered, and we decided to
further explore the data using non-linear modeling via Generalized
Additive Models (GAMs)1.

1Using version 1.22-5 of the gam package in R.
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Table 1: Spearman correlation matrix illustrating the relationships between personality traits, demographic factors, and
experience factors along with asterisks depicting significant relationships. Significance levels: ***p<0.001, **p<0.01, and *p<0.05.
Hours Exp. represents hours spent on ML and interpretability tools in the past. Subj. Exp. represents self-rating of ML and
interpretability tool use in the past. ML in role represents self-reported rating of ML use in daily job.

Openness Conscientiousness Extraversion Agreeableness Neuroticism Age Edu. Level AI Scale Hours Exp. Subj. Exp.

Openness
Conscientiousness 0.161
Extraversion 0.323* 0.224*
Agreeableness 0.118 0.438*** 0.265**
Neuroticism -0.084 -0.484*** -0.394*** -0.513***
Age 0.098 0.193* 0.101 0.160 -0.137
Edu. Level -0.127 0.163* 0.101 -0.085 -0.070 0.159
AI Scale 0.158 0.019 -0.041 -0.024 -0.018 -0.065 0.012
Hours Exp. 0.244** 0.138 0.129 -0.023 -0.162* -0.193* 0.106 0.229**
Subj. Exp. 0.083 0.054 0.074 -0.042 -0.160 -0.261** 0.025 0.287*** 0.827***
ML Role 0.095 0.022 0.122 -0.010 -0.131 -0.218** 0.063 0.200* 0.755*** 0.776***

While GLMs are effective for modeling relationships between
predictors and outcomes, they rely on the assumption that these
relationships are strictly linear. In contrast, GAMs retain the lin-
earity assumption for the overall model structure but allow for
greater flexibility by relaxing the linear relationship assumption
for individual predictors.

GAMs achieve this flexibility by incorporating smooth func-
tions for predictors, which allow for the model to estimate the
relationship between a predictor and the dependent variable in a
nonparametric manner. Instead of fitting a single line, GAMs use
these smooth functions to capture complex, non-linear trends in
the data. This allows GAMs to adapt to varying data patterns while
avoiding over-fitting, as the degree of smoothing can be controlled
during model fitting.

With the capacity to model non-linear smooth effects for spe-
cific predictors, GAMs provide a robust framework for uncovering
intricate relationships that might be missed by GLMs. This dual
capability ensures that both linear and non-linear relationships are
effectively captured, making GAMs a complementary approach
to GLMs in our modeling process, especially when attempting to
reconcile the contradictory prior work in this space.

4.3.1 Individual GAM Results. Individual GAMs for each of our
user characteristics predicting each dependent variable resulted
in a few significant outcomes: (1) gender significantly predicted
change in trust (edf=1.00, p<0.01)2, where the increase in trust for
female participants was slightly diminished in comparison to male
participants. This result aligns with a large-scale survey finding
that men are more trusting of AI than women [51]. (2) accuracy
on the objective AI scale significantly predicted the tendency to
inappropriately rely on the AI predictions (edf=1.00, p<0.05), with
an intuitive negative correlation between the variables. This finding
supports claims in prior work that intuition can be used to override
incorrect AI outputs in decision-making contexts [12]—this intu-
ition would naturally be supported by a familiarity with underlying
AI concepts. Finally, (3) conscientiousness significantly predicted av-
erage change in confidence (edf=3.34, p<0.01), with this non-linear
relationship taking the form of a sharp rise followed by a dip and
2Effective degrees of freedom (edf) indicates the complexity of smooth terms in GAMs,
with higher values reflecting more flexible, non-linear relationships.

another small increase. This finding is largely consistent with prior
work on visualization-assisted decision-making, where participants
with average levels of conscientiousness were the most confident
[1]. We similarly hypothesize that high-conscientiousness partic-
ipants may have been too cautious to report high confidence while
low-conscientiousness participants may have been openly unconfi-
dent in their less careful approach to the study. Conscientiousness
is a well-known predictor for user behavior that makes people feel
confident [53, 61, 64], and yet we had not observed this otherwise
well-known effect in XAI studies thus far. These findings demon-
strate the potential for non-linear modeling to capture expected
results from qualitative work on XAI and user characteristics, and
produce intuitive results suggested by non-XAI literature.

4.3.2 Combined GAM Results. Our final set of models combined
all user characteristic predictors and their possible interaction ef-
fects in a single GAMmodel for each dependent variable. Several of
these models revealed significant, smooth though non-linear, rela-
tionships. Compared to the individual GAMs, the combined GAMs
had an additional significant result related to average confidence in
AI, and numerous interaction effects involving personality facets
became significant. Table 2 summarizes the significant results and
full model results are included in Appendix B.

With these combined GAM results, we finally see the full scope
of prior work on user characteristics reflected in user behavior
in practice. For example, it makes intuitive sense that change in
trust before vs. after directly working with an ML model and XAI
outputs is impacted by some level of prior experience, and that
neuroticism can make this better or worse depending on whether
the neuroticism is skepticism about AI in general or about one’s
own familiarity with the data domain. Similarly, conscientiousness
and openness are known to be the relevant personality facets for
establishing notions of confidence, with one being appropriate con-
fidence and the other having the potential for over-confidence [64].
These exploratory results are initial evidence for the relevance of
prior work on user characteristics forML and XAI contexts, with the
caveat that the relationships identified in this prior work might not
have a linear mapping. We elaborate on this using our qualitative
data and discussion section.
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Table 2: Summary of Significant GAM results from the combined GAM model with interaction effects. Note: Effective degrees
of freedom (edf) indicate the complexity of smooth terms in GAMs, with higher values reflecting more flexible, non-linear
relationships. Significance codes: *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05. Non-significant predictors are excluded for brevity.

Dependent Variable Predictor edf p-value
Change in Trust Gender 1.009 0.003 **

Education Level 1.000 0.028 *
Neuroticism × Hours of Experience 3.976 0.003 **
Subjective Rating of Experience 4.540 0.010 **

ML in Role 1.000 0.006 **
Adjusted 𝑅2 0.260

Deviance Explained 39.9%
Average Change in Confidence Conscientiousness 3.300 0.007 **

Gender 1.000 0.007 **
Openness × Hours of Experience 7.624 0.015 *

Adjusted 𝑅2 0.229
Deviance Explained 36.4%

Average Confidence in AI Openness × Hours of Experience 4.400 0.047 *
ML in Role 1.000 0.020 *
Adjusted 𝑅2 0.215

Deviance Explained 34.6%

4.4 Qualitative Results
We describe results derived from inductive thematic analysis of
open-text responses explaining decision-making processes with and
without the ML and XAI outputs. For major themes, we converted
our axial codes into binary variables to calculate Point-Biserial
correlations with our user characteristics and establish quantitative
relationships that can support future hypothesis generation.

Without ML and XAI assistance, people applied prior heuris-
tics about the relationship between income and demographics to
make predictions. This is in line with the extensive work in cogni-
tive science describing the bounded nature of human rationality,
wherein people anchor themselves to some pieces of information
and make decisions based on them [63, 69]. For our participants,
the most frequently used anchors were feature values for education,
hours worked per week, and occupation. In contrast to a systematic
analysis of features, participants cited a reliance on their “personal
experience” (P44) and “intuition” (P61) about the values of these
few features for the datapoints under consideration.

With ML and XAI assistance, participant reasoning had a
higher variance of factors. Most participants engaged in a “compar-
ison of opinions” (P13) between the ML and XAI output and their
own judgment, however they were evenly split between people
who consulted the outputs before forming their own decision or
vice versa. Confidence played a pivotal role in these interactions.
Participants felt more confident when their decision matched the
model outputs, while mismatches often led to reduced confidence.
We found this to be of particular interest given that these were
decision-boundary datapoints, and the model being used effectively
had random performance on the selected datapoints.

This suggested an inherent difference between people based on
their prior experience with AI andML vs. those with more openness
to newer technology. On one hand, there were participants like
P67 who “fully trust the AI prediction because it was trained on
a lot more data than I have ever seen, so I thought it would be

a lot better of a gauge than my own opinions” and P31 who felt
under-confident in their decisions because “the attempts I made
during the training round were pretty unreliably bad, so I deferred
to a system designed to do that.”

On the other hand, participants with more prior experience or
those who referenced details about the XAI outputs (e.g., SHAP val-
ues) took a more balanced approach, with some being skeptical and
others remaining open to the value of AI-assisted decision making.
For example, P14 noted that they “looked at the AI’s result, and then
did my own analysis of it based on their sector, age, and education.
I took the AI’s result with a grain of salt.” While P147 was simi-
larly critical about evaluating the ML and XAI outputs, they were
open to accepting future outputs once they had established that the
model outputs made sense: “I used the AI’s prediction and the SHAP
explanation plot extensively to make decisions about the individ-
ual’s income. This additional information allowed me to refine my
understanding and make more accurate predictions [over time].”

To quantify some of these relationships, we coded partic-
ipant responses about leaning towards AI’s opinion vs. their own
and specific mentions of SHAP in their reasoning as two binary
variables. Point-Biserial correlations showed significant positive
relationships between the experience variables and these two bi-
nary variables.3 This suggests that people with more prior expe-
rience tended to follow the AI outputs and SHAP explanations
closely, and incorporated them as a part of their own reasoning.
However, given that the ML model used here had little predictive
power on these decision-boundary datapoints, it is unclear whether
this helped them on performance metrics. What is also unclear is
whether those who did not mention ML or XAI in their reasoning

3Correlations between leaning towards AI’s opinions on predictions and experience
variables: Hours-Based Experience (𝑟 = 0.31, 𝑝 = 0.0003), Subjective Rating of Experi-
ence (𝑟 = 0.33, 𝑝 = 0.0001), and ML Experience in Role (𝑟 = 0.28, 𝑝 = 0.0011)
Correlations between mentions of specific XAI outputs (e.g., SHAP values) and experi-
ence variables: Hours-Based Experience (𝑟 = 0.21, 𝑝 = 0.0097), Subjective Rating of
Experience (𝑟 = 0.18, 𝑝 = 0.0279), and ML Experience in Role (𝑟 = 0.21, 𝑝 = 0.0112).
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completely disregarded them or simply forgot to mention them
in post-study responses. We hypothesize that there is a complex
interaction effect at play between prior experience and openness
to technology acceptance, but more in-depth qualitative methods
are needed to concretely unpack that.

Overall, our qualitative analyses suggest that intuition is a
key aspect of ML and XAI use. There are several sources for this
intuition: inherent self-confidence, prior experience in ML and
XAI, prior domain knowledge, openness to new technology. These
sources also do not have linear relationships with reasoning; dif-
ferent people under different settings rely on the same factors
in different ways. We find this to be further evidence that user
characteristics—especially for this newer type of decision-making
assisted by AI—are in flux both for an individual (over time) and
across individuals. Therefore, we discuss the (in)feasibility of mod-
eling them as established relationships in the following section.

5 Discussion
We conducted this research to establish an integrated understand-
ing of user characteristics relevant to XAI use for decision-making.
Contradictory results from prior studies motivated our work, with
some claiming the significance of certain user characteristics and
others refuting such claims. Our primary analysis did not solve this
dilemma, butwe discovered new insights oncewe challenged our ap-
proach via exploratory analysis. In an effort to provide consistency
and direction to this line of research, we discuss improvements
to the measurement of human-centered facets and describe more
holistic approaches to collecting measurements for personalization.

5.1 Measurement of User Characteristics
We consider the lack of consensus in this line of research a mea-
surement issue rather than a modeling one. Below, we articulate
measurement issues that diffuse the community’s efforts as we
grapple with the complexities of user characteristics.

Disparate task settings and explanation purposes. We crit-
ically identify the need to formalize what must remain method-
ologically consistent between XAI studies to produce comparable
results. Prior work on user characteristics and XAI yielded pos-
itive results when explanations passively educated users about
system behaviors. This includes explanations about why certain
recommendations appear [43, 44], or why content is displayed in
a specific manner [13]. On the other hand, our work and others
[37, 49] that use explanations to support decision-making have
produced negative results. This discrepancy forms a pattern: XAI
engagement with consequential explanations differs significantly
from more supplementary explanation needs. Thus, the community
should study XAI which serves different purposes separately and
consistently, respecting this distinction when comparing results.

Subjective and objective metrics. Research on survey method-
ology consistently highlights the importance of question-phrasing [18,
22]. Yet, manyXAI studies (including us, for some parts) use arbitrarily-
defined sentences to capture subjective ratings, which are claimed
to measure certain concepts and characteristics. This is a fundamen-
tally flawed approach when it comes to generalizability of survey
data and instruments [22]. While it is initially useful to have these
types of subjective ratings, ultimately, we either need validated

scales or complementary objective metrics to ensure data validity.
We prioritized capturing user characteristics using either validated
scales or objective metrics, and used subjective ratings like these
only as supplemental measures. Significant future work is needed
towards both efforts, perhaps beginning with comparing the value
of existing validated scales, similar to the work of Stein et al. [64].

Lack of benchmarking and replication. The lack of bench-
marking hampers the consistency and comparability of results in
this research area. Benchmarks serve as common points of com-
parison and support the concerted, organized efforts of research
communities. A systematic literature review of personalized XAI
studies would benefit the design of benchmarks by retrospectively
providing structure to the various methodologies, consistencies,
and contradictions that have arisen in this line of research.

Overall, when we think of the measurement crisis in AI, ML, and
XAI, technical facets of the field come to mind: identifying fairness
metrics, representing bias and harms, or finding faithful approxima-
tions of model behavior. Much research attention has been given
to these challenges, and rightfully so. However, the measurement
challenges identified above instead pertain to fundamental human-
centered aspects of AI, ML, and XAI use in practice. As a field, we
need equal prioritization of both kinds of measurement problems if
we ultimately intend for these technologies to be useful for people.

5.2 Holistic Measurements for Personalization
In addition to more rigorous measurement standards, we identify
approaches to measurement that capture more holistic views of
participants and their engagement with XAI. These approaches
extend beyond the conventional methods that capture snapshots of
XAI engagement. Such snapshots represent one-off engagements
with proxy tasks that are severely limited both temporally and by
the minimal models used to represent participants. In contrast, we
propose approaches to measurement that could help establish a
robust understanding of individuals and their use of XAI.

Accounting for novelty. General perceptions of ML applica-
tions are evolving and contentious [67]. These perceptions are
likely to continue shifting, and will be aggravated when experi-
ments allude to distressing applications of XAI outside of the lab
such as content moderation or tasks like ours that highlight social
inequalities. Given that technology acceptance and diffusion are
fundamentally intertwined with user characteristics [65], research
in this area should be more intentional about those mediators as
general sentiment on ML shifts. Having emphasized the importance
of a shifting relationship to ML on the grand scale, we do the same
for the individual scale in the following point.

Capturing longitudinal use. A longitudinal study on XAI use
would bring much value to this line of research, particularly given
the significant effect of experiential factors we observed. Experi-
ential factors were significant more often than personality and
demographic factors, both in our quantitative and qualitative find-
ings. As such, an individual’s engagement with XAI will shift as
they earn ML experience or as the technology in use becomes less
novel to them. Thus, to ensure that XAI is appropriately employed
in critical decision-making contexts where its use is intended to
become routine, we must go beyond studying isolated proxy tasks
and instead study the patterns that emerge from sustained use.
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Recsys-inspired measures. Finally, we take inspiration from
the study of recommender systems to propose an alternative, far
more holistic, measurement approach. Rather than limit studies to
arbitrarily select a handful of stable characteristics for evaluation,
we can instead analyze log data to develop behavioral insights on
XAI use. Just as recommender system work logs information re-
garding interactions, previously viewed content, and mood, there
is an opportunity to log a similar set of information when indi-
viduals engage with explanations. Such logs have the benefit of
capturing factors that are less stable than those typically studied
in this line of research, thus accounting for how decision-making
processes shift day to day and even decision to decision. Produc-
ing a dataset of such logs would allow the community to identify
complex, unanticipated associations with higher ecological validity.

Overall, our results indicated that conventional approaches to
studying user characteristics in relation to XAI are severely limited.
Many key insights emerged once we incorporated qualitative anal-
ysis and extended beyond linear models, both practices that are not
the norm for this topic. From this experience, we encourage the com-
munity to continue extending beyond the measuring practices that
research in this area conforms to; we can discover richer insights
once we take more holistic approaches to measuring XAI use.

6 Limitations
We acknowledge the following limitations that may affect the
broader applicability of our findings. First, our use of decision
boundary datapoints muddles the signal from our inappropriate
reliance metric. We used these datapoints to avoid any concrete
impact of the ML model’s accuracy and to be able to attribute any
distinctions in results between unassisted vs. assisted classification
to user characteristics alone. However, the difficulty of these dat-
apoints might have resulted in random classifications. Follow-up
work could utilize datapoints with a wide range of difficulty for
humans while still having low AI confidence (the AI outputs and
explanations could even be fabricated to make this so).

Another limitation of our methodology is that we assume partici-
pants are not aware that they re-classify the same set of 8 datapoints.
It would be valuable if this was the case so that participants would
engage with the AI-assisted classifications as deeply as they did
with the non-AI-assisted classifications—if participants knew they
were re-classifying datapoints, they may just replicate their answers
without deliberation. We never told participants that they were re-
classifying the same set of datapoints, but that did not necessarily
prevent them from coming to that realization. To avoid this risk,
future work may consider drawing from pools of matched data-
points where each datapoint in the non-AI-assisted classifications is
matched with a similar datapoint in the AI-assisted classifications.
We did not use that approach as it may introduce confounding fac-
tors in the comparison between decision-making with and without
AI, with this comparison being the main focus of our study; we
encourage future work to consider the tradeoffs between re-using
datapoints and selecting matched datapoints as they relate to the
research questions being explored.

Finally, we must acknowledge that our study only observed one
explainability tool, SHAP, in one proxy task without any stakes. Just

as we outlined patterns corresponding to XAI that serve passive ver-
sus actionable purposes, similar patterns may persist for contexts
that are inconsequential versus critical. While it is more difficult to
study the critical applications of XAI, these are the very instances
of the technology that motivate our research. This difficulty also
informed our choice of experience-related user characteristics: re-
cruiting participants with a wide range of domain expertise in a
critical decision-making context is challenging. As such, similar to
prior work [49], we focused on technical expertise and picked a
dataset where domain expertise was not required. We anticipate
value in both qualitative and quantitative work that deeply ex-
plores relationships between end users and the XAI tools they use
to regularly make consequential decisions.

7 Conclusion
In this work, we examined the relationship between user character-
istics and XAI use. We used validated metrics to collect personality,
ML experience, and demographic information from participants
before having them classify datapoints predicting people’s income—
first without XAI assistance, and then with it. While our primary
quantitative analysis yielded results echoing prior work on the min-
imal impact of user characteristics, our qualitative and exploratory
statistical analyses brought additional insights that lead us to fun-
damentally question how XAI personalization is measured. We step
away from the conventional measuring practices limiting the pos-
sibilities for this research area, demonstrating the value in building
more holistic models of end-users and their behavior. We further
outline holistic and rigorous measuring practices for the commu-
nity to pursue, believing they have the potential to unravel the
complexities of personalized XAI.
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A Combined GLM Tables

Average Prediction Changed
Predictor Estimate p-value
Intercept 2.771 0.184
Age -0.0068 0.626
Gendermale 0.185 0.553
Gendernon-binary 2.404 0.158
Education level -0.049 0.571
AI Scale -0.076 0.411
Hrs.Exp 0.101 0.666
Subj.Exp -0.132 0.516
ML in Role -0.095 0.409
Extraversion -0.244 0.818
Agreeableness 1.284 0.353
Conscientiousness 1.173 0.335
Neuroticism 0.424 0.722
Openness -0.609 0.622
AIC -0.55025

Inappropriate Reliance
Predictor Estimate p-value
Intercept 4.225 0.217
Age -0.004 0.856
Gendermale 0.366 0.479
Gendernon-binary -1.114 0.504
Education level -0.182 0.208
AI Scale 0.027 0.864
Hrs.Exp -0.268 0.496
Subj.Exp 0.207 0.551
ML in Role -0.195 0.305
Extraversion -0.478 0.797
Agreeableness -3.537 0.155
Conscientiousness 3.550 0.0771 .
Neuroticism 2.072 0.296
Openness 0.766 0.704
AIC -129.82

Average Change in Confidence
Predictor Estimate p-value
Intercept -0.736 0.370
Age -0.001 0.853
Gendermale 0.190 0.132
Gendernon-binary 0.132 0.767
Education level 0.029 0.389
AI Scale -0.061 0.119
Hrs.Exp -0.157 0.118
Subj.Exp 0.122 0.164
ML in Role 0.041 0.399
Extraversion -0.289 0.482
Agreeableness 0.603 0.274
Conscientiousness 0.778 0.103
Neuroticism 0.278 0.539
Openness -0.222 0.642
Adj. R-squared 0.01133
p-value 0.3391

Average Confidence in AI
Predictor Estimate p-value
Intercept 2.103 0.0502 .
Age 0.008 0.286
Gendermale 0.088 0.589
Gendernon-binary -0.914 0.115
Education level -0.016 0.719
AI Scale 0.105 0.039 *
Hrs.Exp -0.145 0.264
Subj.Exp 0.101 0.370
ML in Role 0.101 0.112
Extraversion 0.573 0.285
Agreeableness 0.596 0.405
Conscientiousness -0.351 0.569
Neuroticism -0.254 0.666
Openness -0.132 0.832
Adj. R-squared 0.05948
p-value 0.06336

Change in Trust
Predictor Estimate p-value
Intercept -2.846 0.775
Age 0.125 0.062 .
Gendermale 2.044 0.182
Gendernon-binary -9.451 0.081 .
Education level 0.301 0.468
AI Scale 0.643 0.174
Hrs.Exp 0.488 0.688
Subj.Exp -0.283 0.789
ML in Role 1.013 0.089 .
Extraversion 2.746 0.582
Agreeableness 2.188 0.743
Conscientiousness -8.374 0.147
Neuroticism -0.381 0.945
Openness -6.012 0.301
Adj. R-squared 0.06616
p-value 0.04788
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B Combined GAM Tables

Change in Trust
Predictor edf p-value
Extraversion 1.000 0.851
Agreeableness 3.358 0.221
Conscientiousness 1.000 0.102
Neuroticism 1.000 0.960
Openness 1.000 0.373
Age 1.000 0.051 .
Gender 1.009 0.003 **
Education Level 1.000 0.028 *
Hours-Based Experience 1.000 0.956
Openness × Hours-Based Experience 1.550 0.079 .
Neuroticism × Hours-Based Experience 3.976 0.003 **
Subjective Rating of Experience 4.540 0.010 **
AI SCALE 1.000 0.064 .
ML in role 5.314 0.0059 **
Adjusted 𝑅2 0.260

Average Prediction Changed
Predictor edf p-value
Extraversion 1.000 0.969
Agreeableness 1.000 0.357
Conscientiousness 1.000 0.317
Neuroticism 1.000 0.722
Openness 2.387 0.393
Age 1.000 0.632
Gender 1.507 0.433
Education Level 1.000 0.445
Hours-Based Experience 1.000 0.666
Openness × Hours-Based Experience 8.71e-06 0.705
Neuroticism × Hours-Based Experience 1.83e-06 0.351
Subjective Rating of Experience 1.157 0.655
AI SCALE 1.000 0.411
ML in role 1.000 0.455
Adjusted 𝑅2 0.0022

Average Change in Confidence
Predictor edf p-value
Extraversion 1.000 0.614
Agreeableness 1.000 0.259
Conscientiousness 3.300 0.007 **
Neuroticism 1.000 0.271
Openness 1.000 0.087 .
Age 1.000 0.857
Gender 1.000 0.007 **
Education Level 1.000 0.606
Hours-Based Experience 1.000 0.446
Openness × Hours-Based Experience 7.624 0.015 *
Neuroticism × Hours-Based Experience 2.926 0.854
Subjective Rating of Experience 1.000 0.539
AI SCALE 1.000 0.067 .
ML in role 1.000 0.057 .
Adjusted 𝑅2 0.229

Inappropriate Reliance
Predictor edf p-value
Extraversion 1.559 0.389
Agreeableness 1.000 0.033 *
Conscientiousness 1.000 0.041 *
Neuroticism 1.000 0.284
Openness 1.000 0.710
Age 1.000 0.732
Gender 1.000 0.384
Education Level 1.000 0.271
Hours-Based Experience 1.000 0.472
Openness × Hours-Based Experience 4.47e-05 0.145
Neuroticism × Hours-Based Experience 9.86e-04 0.133
Subjective Rating of Experience 1.000 0.540
AI SCALE 1.000 0.895
ML in Role 1.000 0.219
Adjusted 𝑅2 -0.007

Average Confidence in AI
Predictor edf p-value
Extraversion 1.000 0.279
Agreeableness 1.000 0.324
Conscientiousness 2.926 0.064 .
Neuroticism 1.301 0.814
Openness 1.000 0.803
Age 3.497 0.285
Gender 1.811 0.144
Education Level 1.000 0.721
Hours-Based Experience 1.000 0.295
Openness × Hours-Based Experience 4.400 0.047 *
Neuroticism × Hours-Based Experience 7.82e-10 0.829
Subjective Rating of Experience 1.000 0.322
AI SCALE 3.698 0.061 .
ML in Role 1.000 0.020 *
Adjusted 𝑅2 0.215
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C Intake Survey
C.1 Demographics and Background

(1) Gender (open-text)
(2) Age (open-text)
(3) Education Level

• Some high school, no diploma
• High school graduate, diploma or equivalent (e.g., GED)
• Some college credit, no degree
• Tread / technical / vocational training
• Associate degree
• Bachelor’s degree
• Master’s degree
• Professional degree
• Doctoral degree

(4) Yourmajor for your education degree, e.g., Computer Science,
Data Science, Information (open-text)

(5) Occupation (open-text)
(6) How long have you been in your current job or student role

(please enter time in months)? (open-text)
(7) Are you currently a resident of the United States? (binary)
(8) To what extent is Machine Learning a part of your daily job

or student role? (scale 1–7)
(9) How would you rate your Machine Learning knowledge?

(scale 1–7)
(10) How many hours (estimate) have you spent on Machine

Learning-related tasks (e.g., data preprocessing, model build-
ing)? (scale borrowed from [34])
• I have never done a Machine Learning task
• Less than 10 hours
• 10-20 hours
• 20-50 hours
• 50-100 hours
• More than 100 hours

(11) How familiar are you with interpretability tools for Machine
Learning (e.g., LIME, SHAP, GAMs)? (scale of 1-7)

(12) How many hours (estimate) have you spent using inter-
pretability tools for Machine Learning?
• I have never used an interpretability tool before
• Less than 10 hours
• 10-20 hours
• 20-50 hours
• 50-100 hours
• More than 100 hours

C.2 Personality
Participants completed the Big 5 Inventory, a validated scale used to
measure personality developed by John et al. [30].

C.3 ML Literacy Assessment
For brevity, we have omitted the multiple choice options from these
questions. The options can be found in the research paper about this
assessment by Hornberger et al. [25]

(1) What is a key criterion for the quality of a model in machine
learning?

(2) What should be considered in machine learning when divid-
ing the data into training and test data?

(3) What is the black box problem?
(4) You are testing a machine learning model that is supposed to

classify photos of animals. You notice that the model is better
at recognizing cats than dogs. What could be the reason for
this?

(5) What are knowledge representations in the field of AI?
(6) How does supervised learning differ from unsupervised

learning?
(7) Rank the process steps in supervised learning into the correct

order by dragging and dropping.
(8) Which ethical principles should be considered when devel-

oping AI?
(9) What are central risks in using AI for predictive policing?
(10) Which legal challenges do AI applications entail?

D Main Survey
D.1 Unassisted Task Overview
Participants were introduced to the unassisted classification task and
given an overview of the Adult Income dataset [7].

D.2 Practice Task
For brevity, we include only one example of the four practice tasks.
Once participants clicked on their classification decision, a pop-up
appeared with the correct answer and feedback.

Feature Value
Age 47
Work class Self-emp-inc (self employed incorporated)
Education HS-grad
Marital status Never married
Occupation Other-service
Race Amer-Indian-Eskimo
Sex Male
Capital Gain 0
Capital Loss 0
Hours per Week 56
Native Country Scotland

(1) According to you, what is the predicted income for the person
represented in this data point?
• <= 50k
• > 50k

D.3 Unassisted Task
For brevity, we include only one example of the eight unassisted data
point classifications.
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Feature Value
Marital Status Married-civ-spouse (married to a civilian spouse)
Age 39
Hours per Week 24
Occupation Tech-support
Education Assoc-acdm
Capital Gain 0
Capital Loss 0
Race White
Sex Male

(1) According to you, what is the predicted income for the person
represented in this data point?
• <= 50k
• > 50k

(2) How confident are you about your prediction on their income
above?
• Scale 0 to 6

D.4 AI-Assisted Task Overview
Participants were told that they would classify 8 datapoints with the
assistance of an AI system. We provided instructions on how to inter-
pret the AI outputs. Here, these outputs were SHAP waterfall plots and
the instructions were based on consolidated information from SHAP
tutorials. Before the task, participants also completed a validated trust
questionnaire developed by Jian et al. [28].

D.5 AI-Assisted Task
For brevity, we include only one example of the eight AI-assisted
datapoint classifications.
The datapoint was classified as <= 50k by the AI. Here is the SHAP
explanation plot for this prediction. Use it to answer the questions
below.

(1) Having seen the AI’s prediction, what do you think is the
predicted income for the person represented in this data
point?
• <= 50k
• > 50k

(2) How confident are you about your prediction on their income
above?
• Scale 0 to 6

(3) To what extent do you think that the AI made the right
prediction for this data point?
• Scale 0 to 6

D.6 Post-Study Questionnaire
(1) Complete the trust questionnaire developed by Jian et al.

[28] again, after using the AI system.
(2) Describe your decision making process when you did not

have the AI’s prediction help.
(3) Describe your decision making process when you had the

AI’s prediction help.
(4) (Optional) How was your overall experience with the study?

Any comments or concerns?
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