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While interpretability tools are intended to help people better understand machine learning (ML), we find that
they can, in fact, impair understanding. This paper presents a pre-registered, controlled experiment showing
that ML practitioners (N = 119) spent 5x less time on task, and were 17% less accurate about the data and
model, when given access to interpretability tools. We present bounded rationality as the theoretical reason
behind these findings. Bounded rationality presumes human departures from perfect rationality, and it is
often effectuated by satisficing, i.e., an inclination towards “good enough” understanding. Adding interactive
elements—a strategy often employed to promote deliberative thinking and engagement, and tested in our
experiment—also does not help. We discuss implications for interpretability designers and researchers related
to how cognitive and contextual factors can affect the effectiveness of interpretability tool use.
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1 INTRODUCTION

Harmful use of ML can only be avoided if the people who build and use ML models understand
the reasoning behind their predictions. The ML community has developed approaches like inter-
pretability and explainability to help people understand ML outputs and reasoning. These include
models that are inherently interpretable (e.g., decision trees [101], generalized additive models
(GAMs) [14, 41]) and post-hoc explanations for the predictions made by blackbox models (e.g.,
LIME [104], SHAP [77]). Furthermore, interpretability and explainability approaches have been
incorporated in tools that not only provide text or visual explanations, but also engage people with
interactive features for data and model exploration (e.g., counterfactual analysis, responsive Ul
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elements for comparing individual datapoints, error cohorts, etc.). Toolkits like Google’s What-if
Tool, Microsoft’s Responsible Al Toolbox, and IBM’s Al Fairness 360, all offer a variety of these
interactive features to promote model interpretability and explainability.

However, several studies with both ML practitioners and lay end-users have shown that inter-
pretability and explainability approaches, and tools that implement these, do not work as intended.
Evidence suggests that people misuse and over-trust interpretability tools,! and are unable to make
accurate judgements about the data and model despite having access to the additional information
provided by these tools [9, 13, 59, 62]. These user studies validate in practice the work of several
scholars who have translated theories from the social sciences (e.g., [43, 118]), cognitive science
(e.g., [68, 75]), philosophy (e.g., [42, 73, 97]), and organizational science (e.g., [81, 134]) for the ML
context [30, 58, 84, 86]. These scholars assert that we need to learn from how people make sense of
something—individually and collectively—and design solutions that support similar sensemaking
for ML outputs and reasoning. This line of prior work proposes a shift in focus from generating
different types of explanations to understanding what people need from an explanation. Our re-
search is an extension of this human-centered shift in perspective. We consider the question of
why interpretability tools are inadequately used.

We hypothesize bounded rationality as being the underlying reason for inadequate use of in-
terpretability tools. Bounded rationality suggests a “kind of rational behavior that is compatible
with the access to information and the computational capacities that are actually possessed by
organisms, including man, in the kinds of environments in which such organisms exist” (emphasis
our own) [114, p99]. Under this model of decision-making, people select “good enough” options
rather than considering the utility of all alternatives. For example, a diner may default to the most
commonly purchased or highly-rated items in a food delivery app, rather than evaluate all possible
menu items. Bounded rationality is an innate feature of human decision-making; people can rarely
consider the utility of all possible choices before coming to a decision—it would lead to information
overload and decision paralysis. However, whether the outcomes of bounded rationality are good
or bad is dependent on the heuristics that people apply to select a good enough option. When
these heuristics are inaccurate, bounded rationality can lead to and propagate harmful judgements.
Therefore, for this ML-based setting, we ask the following questions: To what extent do people apply
bounded rationality when using interpretability tools? Does the application of bounded rationality
help or hurt in this context?

For a concrete example of bounded rationality in the ML context, imagine you are a ML prac-
titioner analyzing the Titanic survival dataset.? This dataset is used to predict which passengers
survived the sinking of the Titanic based on demographic and socio-economic features. Say we
built a blackbox model for this dataset and are using the SHAP [77] Python package as a post-hoc
explainer. Figure 1 presents the three types of visuals available via SHAP (and most interpretability
tools): (1) global explanation, showing the average impact of each feature on the model’s predictions;
(2) partial dependence plots, showing the relationship between one input feature and the output
variable; and (3) local explanations, describing how an individual prediction was made. As a ML
practitioner trying to understand the model outputs, one approach you might take is to explore
counterfactuals: what is the smallest change in input features that would cause a prediction to flip?
Consider this question for the datapoint presented in the bottom row of Figure 1. Here are some
options and reasoning possibilities for switching the prediction of this datapoint from 1 (survived)
to 0 (did not survive): (1) change “TotalFamily” from 3 to 5, because if you had more people in your

1We use the term “interpretability” to indicate both interpretability and explainability approaches and tools throughout the
paper. For the purposes of our study and the tools that we employ, the two terms can be considered interchangeable.
Zhttps://www.kaggle.com/c/titanic
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Fig. 1. Visualizations output by the SHAP Python package, a post-hoc explainer for blackbox models. These
are generated for the Titanic survival dataset using a LightGBM model. Top (left to right): Global explanation;
Partial dependence plot for a continuous input feature, age; Partial dependence plot for a categorical input
feature, sex. Bottom (left to right): Waterfall plot and Force plot, both types of local explanations for an
individual data point.

family, your attention would have been divided in trying to make sure they all reached the rafts; (2)
change “Fare” from $52.55 to $10, because a lower fare would likely correspond to a lower passenger
class, who were assigned cabins in the lower decks; or (3) change “Age” from 37 to 70, because
the likelihood of survival is lower for older passengers. Which option would you pick? Under
bounded rationality, people look for a plausible answer, which can be accurate or inaccurate. Of
these options, (1) and (2) are accurate; (2) is also plausible, thus a case of good, accurate outcomes;
and (3) is plausible but inaccurate (due to the mediating effect of “Pclass” being first), thus a case of
bad outcomes from applying bounded rationality.

To observe the role of bounded rationality in the ML context, we conducted a between-subjects,
pre-registered, controlled experiment with ML practitioners (N = 119),> asking them to perform
exploratory data analysis and answer questions about the data and model that closely resembled
the example above. Before we briefly describe our setup, it is worth highlighting the trade-offs
between internal and ecological validity that make these kinds of evaluations hard to conduct. On
the one hand, any experiment requires consistent setup and data collection mechanisms. On the
other hand, ML practitioners typically have unique and personalized work setups, making it hard
to simulate something realistic but also consistent for everyone in the experiment. This is only
made more challenging by the diversity of tools available for ML and interpretability, all with their
unique, sometimes incompatible, setup requirements. In sum, our domain (ML and interpretability),
participant pool (ML practitioners), research goals (hypothesis testing), and construct (the abstract
and individualized notion of bounded rationality), all have conflicting yet critical requirements.

3We use the broad category term ML practitioners to represent people with prior experience in ML. These include data
scientists, practitioners, software designers/developers for ML-based systems, ML researchers, and ML engineers.
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We worked around these issues by using a joint setup where participants were given access
to a Google Colab notebook with the relevant code and asked questions (multiple-choice ques-
tions (MCQs), ratings, open-text) concurrently via a Qualtrics survey. In terms of interpretability
approaches, our experiment design was split into five conditions: one representing the normal
ML pipeline without built-in interpretable outputs (control); two conditions representing visual
explanations output by implementations of interpretability approaches, one glassbox model (GAMs)
and the other a post-hoc explainer for a blackbox model (SHAP); and two conditions representing
the full scope of interactive features offered by interpretability toolkits, one built on a glassbox
model (Microsoft’s Explanation Dashboard) and the other relying on a post-hoc explainer for a
blackbox model (Google’s What-if Tool). Our glassbox conditions relied on the same underlying
model, and the blackbox conditions both used the same post-hoc explainer and blackbox model.
The questions about the data and model were also consistent across all conditions.

We found significant evidence showing that interpretability tools lead to bounded rationality
with inaccurate outcomes. People who relied on visual explanations from static interpretability tools
spent 5x less time on the data science task and had 17% less accurate answers compared to control.
We had hoped and hypothesized that interactive interpretability tools would promote engagement
and more deliberative thinking, leading to accurate outcomes from bounded rationality. However,
in practice, not only did participants in our interactive tools conditions rely on bounded rationality
with inaccurate outcomes, but they did so under higher cognitive effort and lower reported usability
scores. Our exploratory analyses also indicate that prior experience with ML or interpretability
and a more accurate mental model of the setup used do not disengage bounded rationality modes.
Instead, seemingly negative user experience design attributes like lower confidence, lower usability,
and higher skepticism appear to coincide more with accurate answers about the data and model.
Given these results, we argue that interpretability needs to be reconsidered at a paradigmatic level.
We pose the following question for interpretability tool designers and researchers: how do we
design for interpretability and explainability knowing that people will never pay attention to all the
information presented to them? We discuss design implications based on our exploratory analysis
of cognitive (e.g., prior experience) and contextual (e.g., usability, confidence) factors, and how
these affect bounded rationality in interpretability tool use.

2 RELATED WORK
2.1 Interpretability

Interpretability is defined from a model’s perspective as the “ability to explain or to present in
understandable terms to a human” [25, p2]. It is necessary because “if the system can explain
its reasoning, we can verify whether that reasoning is sound with respect to [important, pre-
determined] auxiliary criteria” [25, p1]. These auxiliary criteria include things like “safety [6,
93, 126], nondiscrimination [12, 38, 107], avoiding technical debt [110], or providing the right to
explanation [34]” [25, p1]. Interpretability also serves as a proxy for other desiderata for ML-based
systems such as reliability, robustness, informativeness, etc. which, in turn, promote trustworthiness,
accountability, and fair and ethical decision-making [74].

There are two approaches for achieving model interpretability. First, using “glassbox” ML models
that are designed to be inherently interpretable due to their simplicity. These include simple point
systems [53, 138], decision trees [101] and sets [67], and generalized additive models (GAMs) [14, 40,
89]. The second approach is to train post-hoc explainers that are designed to make the predictions of
“blackbox” models more interpretable. These include local interpretable model-agnostic explanations
(LIME) [104], Shapley additive explanations (SHAP) [77, 112], and other approaches for local expla-
nations [4, 111, 117]. For an overview of interpretability techniques for shallow and deep learning
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models, see the comprehensive reviews by Gilpin et al. [33] published in 2018, Arrieta et al. [7] pub-
lished in 2020, Liao and Varshney [72] published in 2021, and Dwivedi et al. [29] published in 2023.

Despite this proliferation of techniques, there is still debate about what interpretability should
entail. In particular, Rudin [106] argues against the use of post-hoc explanation techniques for ML
models deployed in high-stakes domains because they may not faithfully represent the models’
behavior. Jin et al. [52] call these type of explanations “plausible” rather than accurate, and similarly
express their concern for presenting these explanations to help people reason about model outputs.
Doshi-Velez et al. [26] suggest that interpretability should include not only a justification for
the prediction, but also a description of the decision-making process followed by the model.
Similarly, Lipton [74] surveys different criteria for assessing interpretability, such as simulatability
and decomposability. Adbul et al. [2] highlight interactivity and learnability as cornerstones for
designing visualizations that better support interpretability. Dourish [27] adds scrutability as a
necessary component of interactivity for interpretability.

2.2 Explainability

Although sharing similar underlying goals as interpretability, explainability is more human-centered
and is “associated with the notion of an explanation as an interface between humans and a decision
maker that is, at the same time, both an accurate proxy of the decision maker and comprehensible
to humans” [7, p85]. With its focus on designing explanations in ways that are understandable to
people, explainability relies on insights from the social sciences, in how people explain things to
each other, and cognitive science, in how people individually make sense of the world.

Miller [84] and Mueller et al. [87] provide comprehensive reviews of the properties of explana-
tions from the philosophy (e.g., [35, 73, 96, 125]) and social science (e.g., [43, 68, 76, 79, 88, 118])
literatures. They note that explanations are contrastive, social, and selected by people in a biased
manner (e.g., in accordance with cognitive or social heuristics), and that referring to probabilities
or statistical generalizations in explanations is usually unhelpful. To that end, Miller [84], Miller
et al. [86], and Lombrozo [75] suggest simplicity, generality, and coherence as the main evaluation
criteria for explanations.

The social science literature proposes that we think of explanations as a conversation. Grice’s
maxims of quality, quantity, relation, and manner [35], which form the core of a good conversa-
tion, should therefore be followed when designing explanations [64, 79, 118]. Leake’s goal-based
approach to explanation evaluation adds metrics such as the timeliness of an explanation in pro-
viding the opportunity to deal with the prediction being explained, knowability and the features
responsible for “knowing,” and the independence of individual explanations [68]. Explanations
that follow this goal-based approach must include grounding in some common demonstrative
reference between people and the explanation system [20, 78]. It is due to these insights that, increas-
ingly, interpretability and explainability tools include characteristics such as interactivity [5, 44],
counterfactual “what-if” outputs [85, 130], and modular and sequential explanations [82].

2.3 Human Evaluations of Interpretability and Explainability

User studies of interpretability and explainability tools have shown limited efficacy towards their
goal of helping people understand ML. Only recently has the research community begun to evaluate
the tools via user studies. Yet, already, there is a consistent pattern of inadequate use of these tools.
Sometimes, this is seemingly due to information overload. For example, Poursabzi-Sangdeh et al.
[99] test the impact of two factors often thought to affect interpretability—number of input features
and model transparency (i.e., glassbox vs. blackbox models). They find that it is easier to simulate
models with a small number of features, but that neither factor impacts people’s willingness to
follow a model’s predictions. Moreover, too much transparency causes people to incorrectly follow a
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model even when it makes a mistake. Springer and Whittaker [119] find that explanations can create
information overload and distract people from forming a useful mental model of how a system oper-
ates. Similarly, Lage et al. [65] study the length and complexity of an explanation, finding that longer
explanations overload people’s cognitive abilities. Other times, it seems that people are not critical
enough of the explanation outputs and consequently over-trust them. Kaur et al. [59] and Bansal
et al. [9] evaluate practitioners’ and lay users’ use of explanations, both finding similar patterns
of over-use and people using the existence of explanations as a signal for high model accuracy.

Between 2018 and 2021 alone, over 100 peer-reviewed papers published results from human
subjects evaluations of Al outputs and explanations in decision-making contexts [66], and the
number has only grown since. This thread of work helps answer questions like: which explanation
types/formats are easier to understand [37, 71, 140]; what works best in higher stakes settings [16,
95, 128, 137]; how to present explanations to lay users, novices, and experts [100, 133]; which types
of uncertainty information are helpful [48, 103, 139]; what causes information overload [13, 119];
whether explanations should presented as questions, answers, or a dialogue [23, 69, 70]; etc.

At a high level, these evaluations reveal a gap between our theoretical understanding of what
an explanation should include and whether that works in practice. Although we know the prop-
erties of good explanations that would support effective human-machine collaboration, the other
element of that relationship is relatively unexplored: we do not fully understand how facets about
humans affect this relationship. Some recent work relies on cognitive science theories to assert that
cognitive heuristics can affect the effectiveness of explainability tools in various domain-specific
settings [3, 11, 13, 32, 58, 90, 103, 103]. Consolidating these theories, Wang et al. [131] even present
a framework for how interpretability and explainability should be shaped, from the get-go, with
human cognitive needs in mind. However, it remains unclear why and in what settings people
apply these cognitive heuristics, and whether the outcomes of this application are harmful for
establishing a good understanding of ML predictions. We extend this work by delving further into
the fundamentals of human cognition.

2.4 Bounded Rationality

Bounded rationality describes human beings as rational agents functioning within cognitive and
informational constraints [116]. These constraints separate the boundedly rational person from
homo econmicus, described by Mill [83] in 1836 as “a being who desires to possess wealth, and
who is capable of judging of the comparative efficacy of means for obtaining that end.” It is this
latter half with which bounded rationality most directly disagrees. Bounded rationality thus seeks
to explain and predict human behavior in a way that more closely matches reality than the wholly
rational view of human decision making encapsulated by the concept of homo economicus [114].

Given the constrained cognitive abilities and limited information available to people, they often
employ a component of bounded rationality called satisficing in lieu of maximizing. Under a
maximizing framework, people process all relevant information about a set of options and choose
the optimal option in view of available global information and boundless cognition [115]. In reality,
humans have neither the cognitive capacity nor the requisite information about most choices to
maximize in this way. As a consequence, boundedly rational decision makers satisfice: they choose
the option that suffices to meet a (consciously or unconsciously) predetermined set of criteria to a
satisfactory degree (thus, the portmanteau of satisfy and suffice) [116].

Simply put, satisficing is a process by which people choose an option that is “good enough” as
defined by their own criteria. Satisficers do not randomly select from a list of potential choices,
but instead employ rational inattention that allows them to reduce cognitive overhead in the
decision-making process [80]. The explicit rationality of both bounded rationality and satisficing
distinguishes a satisficer from a random chooser. Satisficing appears to be a useful descriptive model
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Fig. 2. We use two common proxies for studying bounded rationality, the time and cognitive effort spent on
a task, to define quadrants for human cognition in Machine Learning settings. These proxies are borrowed
from prior work in cognitive science and behavioral economics (e.g., [21, 47, 54]), and help situate our work in
this existing literature on human-human decision-making settings.

for many cognitive processes including split-second decision making [92], patterned and random
repeated choice scenarios [109], discrete choice scenarios [80], and explanations of theory of mind
under uncertainty [98]. The salient commonalities across domains in which satisficing is observed
or usefully descriptive are the presence of uncertainty or a prohibitive cost of information accrual.

In this work, we propose bounded rationality as being critical for how (much) people understand
ML. Further, we evaluate the role of output explanations and features of interpretability tools in
supporting or undermining human cognition as described by bounded rationality.

3 RESEARCH GOALS AND HYPOTHESES
We seek to examine the role that bounded rationality plays in how ML practitioners use interpretabil-
ity tools. To do so, we compare ML practitioners’ performance on an exploratory data science task be-
tween conditions where they had access to interpretability tools vs. their normal ML pipeline sans in-
terpretability (i.e., a control condition). Table 1 presents a full list of our hypotheses corresponding to
our five dependent variables: time, cognitive effort, hints, accuracy, and response type. Two of these—
time and cognitive effort—are established proxies for bounded rationality in human-human settings.
We introduce the additional three proxies as being specifically relevant for our setup, and ML and
interpretability settings. We describe these hypotheses and dependent variables in more detail below.
Before collecting any data, we pre-registered our intent to study these hypotheses on AsPredicted.*

In cognitive science and behavioral economics, the bounded nature of human rationality is
often expressed as a function of time and effort [21, 47, 54]. These form the basis of our cognitive
framework for the ML context (Figure 2). In an ideal world with infinite information processing
capabilities, one would consider the utility of all information and alternatives before making deci-
sions. This is referred to as maximizing, which requires significant time and cognitive effort [123].
However, prior work in cognitive science and behavioral economics shows that people satisfice to
conserve time and effort in decision-making settings [55, 56, 114].

Translating and expanding the motivations behind these cognitive modes to the ML setting, we
hypothesize that interpretability solutions engage the bounded cognitive modes in ML practitioners

4https://aspredicted.org/ry99g.pdf
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more so than when they do not have access to interpretable outputs. These explanations essentially
bypass the process that practitioners have to follow to understand the data and model on their
own, which includes finding the right approach for generating interpretable outputs, writing code
to make it work, and only then having access to the explanations. However, not all interpretability
solutions are so simple in their working—some require deliberate engagement with interactive
features and show the data and model in a multitude of visual formats. We hypothesize that this
type of engagement might instead lead to optimizing behavior wherein, similar to satisficing,
practitioners spend less cognitive effort on the task, but differently spend more time being engaged
in understanding the content. The remaining quadrant in our cognitive framework represents low
time-high effort situations. The domains of these situations require urgent decision-making with
less time at hand (e.g., healthcare, aviation). Although ML practitioners are responsible for the
models used in these settings, they are rarely actively involved in the day-to-day of this type of
work. That is, the urgency in less acute for practitioners as stakeholders. Therefore, we do not test
this cognitive mode in our experiment.

Overall, we test three types of ML setups: (1) a control condition sans interpretability, (2) visual
explanations from interpretability tools that are static in nature, and (3) interactive interpretability
tools. In line with the quadrants that each of these conditions belong to, we hypothesize that:

H1a People will spend less time on the data science task when using visual explanations from
interpretability tools.

H2a People will expend less cognitive effort on the data science task when using visual explanations
from interpretability tools.

H1b People will spend more time on the data science task when using interpretability tools with
their full range of interactive features.

H2b People will expend less cognitive effort on the data science task when using interpretability
tools with their full range of interactive features.

In addition to the traditional metrics used in cognitive science and behavioral economics, we also
rely on metrics that seem relevant specifically for our task setup and the ML and interpretability
settings, based on findings from prior work. One such metric is the number of hints used during
the study. To avoid making our task setup too cumbersome for participants, we also provide hints
for how to use and interpret the ML models and explanation outputs (setup details in Section 4.4).
Compared to a setup with no built-in interpretability options (control), we anticipate that expla-
nations and interactive elements would make the setup more straightforward, and the data and
model easy to explore, thus lessening the need for hints. Therefore, we hypothesize that:

H3a People will rely on fewer hints to complete the data science task when using visual explana-
tions from interpretability tools.

H3b People will rely on fewer hints to complete the data science task when using interpretability
tools with their full range of interactive features.

Time, cognitive effort, and hints reflect the process behind bounded rationality, but it also affects
the outcomes of a task. Under bounded rationality, people often apply heuristics, i.e., automated
processes that circumvent the need for conscious deliberation of information. While this has its
benefits (e.g., avoiding information overload), it can have negative consequences when people
apply inaccurate heuristics or overly rely on the automaticity afforded by them. In the ML setting,
practitioners are responsible for making accurate decisions about the data and model. As such, we
measure the impact of bounded rationality on the decisions made by practitioners by defining two
outcome-based proxies: (1) the accuracy of their answers about the data and model; and (2) the type of
responses they select, where the types can be accurate, plausible, or randomly inaccurate responses.
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Dependent . s
Variable Hypothesis Cognition Mode

1 Time a) Lower when using visual explanations from interpretability tools. Satisficing
b) Higher when using interpretability tools with interactive features. Optimizing
2 Cognitive Effort a) Lower when using Ylsual exple%r%atmns fror.n 1@terpretz}b1hty tools. Sat{sﬁFlpg
b) Lower when using interpretability tools with interactive features. Optimizing
3 Hints a) Fewer when using visual explanations from interpretability tools. Satisficing
b) Fewer when using interpretability tools with interactive features. Optimizing
4 Accurac a) Lower when using visual explanations from interpretability tools. Satisficing
Y b) Higher when using interpretability tools with interactive features. Optimizing
a) Plausible when using visual explanations from interpretability tools. Satisficing

5 Response Type Lo e I . L
b) Accurate when using interpretability tools with interactive features. Optimizing

Table 1. An overview of the ten hypotheses for our five dependent variables. Each dependent variable
corresponds to two hypotheses, one for visual explanations from interpretability tools and the other for
interpretability tools with interactive features. We hypothesize that the former represents a satisficing
cognition mode and the latter, optimizing.

Prior work claims that ML practitioners overly trust and rely on static explanations from inter-
pretability tools [9, 59]. This suggests that people might be applying incorrect heuristics that lead
to satisficing in these cases. Therefore, we hypothesize that:

H4a People’s responses to questions about the data and model will be less accurate when using
visual explanations from interpretability tools.

Hb5a People will select responses to questions about the data and model that are plausible (rather
than accurate or inaccurate) when using visual explanations from interpretability tools.

On the other hand, interactive interpretability tools, in leading to the hypothesized optimizing
behavior and more deliberate engagement, might resolve the potentially negative outcomes of
bounded rationality. In his dual-process theory of cognition, Kahneman cites heuristics-based
automated reasoning as the use of System 1 (of the brain), compared to System 2 which is a more
deliberative reasoning unit [54]. It follows that one way to combat the application of potentially
inaccurate heuristics for bounded rationality is to engage people in deliberative reasoning modes.
Prior work in HCI shows that we can promote this deliberative thinking and engagement by making
interpretability tools more interactive [5, 44, 102]. Therefore, we hypothesize that:

H4b People’s responses to questions about the data and model will be more accurate when using
interpretability tools with their full range of interactive features.

H5b People will select responses to questions about the data and model that are accurate (rather
than plausible or inaccurate) when using interpretability tools with their full range of inter-
active features.

The five metrics described above form the core of our study of bounded rationality in the ML
and interpretability contexts. We included other variables of interest for exploratory analysis in
our pre-registration, such as usability of the task setup, validity of our dataset and model in the
wild, etc. (Table 2 provides an overview of these).

4 METHODS

We conducted a pre-registered controlled experiment with ML practitioners to study our hypotheses.
The experiment was between-subjects, split across five conditions, each representing a different
ML + interpretability pipeline: (1) normal ML pipeline without any interpretability tools (control);
(2) visual explanations from a glassbox model; (3) visual explanations from a post-hoc explainer
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for a blackbox model; (4) interactive interpretability tool which used a glassbox model; and (5)
interactive interpretability tool which used a post-hoc explainer for a blackbox model.

4.1 Experimental Setup

Our experiment was conducted using a Qualtrics survey with links to Google Colab notebooks
for access to the data, model, and interpretability tools. The setup was designed after carefully
considering the trade-offs between internal and ecological validity, both of which are individually
hard to achieve in the ML setting with this participant pool [24, 59, 99]. On the one hand, studying
an abstract construct via an experiment requires proxies that can be consistently captured through
direct data collection or logging, for hypothesis testing. There is no way to log information like
individual answers for accuracy or the time spent on each question in an open-ended Colab
notebook. On the other hand, a consistent, purely quantitative experimental setup would take away
both: (1) the context in which bounded rationality would normally occur, and (2) the ability to study
the role of certain relevant features of interpretability tools (e.g., interactivity). For example, Kaur
et al. [59] copied the visual outputs from interpretability tools within a Qualtrics survey. But, as
they note, this did not allow for direct participant interaction with the data science setup.

For our research goals, both access to a realistic setup and consistency of data logging are (con-
flicting) critical requirements. To account for these, our setup employs both mechanisms: a Qualtrics
survey to consistently capture quantitative metrics for hypothesis testing, and a Colab notebook
with the relevant ML components. This works with all our constraints because questions about the
data and model were asked in the Qualtrics survey, which allows easy metric logging. The Colab
notebooks allow for exploration while answering these questions, which enables relevant context.
Each Colab notebook presented an overview of the various ML elements included in it, followed
by a dataset description, model overview and train/test accuracy numbers, and an overview of the
interpretability option in the condition.’ It is worth noting that, although this setup resolved issues
with internal and ecological validity, it only works for the specific task, setting, and stakeholders
we employed in our study. As such, the external validity of our study and participant pool remains
an open question that we hope to examine in future work (see Section 7 for more details).

4.2 Choice of Dataset
We used the Adult Income dataset® with some modifications for our data science task. The Adult
Income dataset is based on 1994 census data, publicly available via the UCI Machine Learning Repos-
itory. Each of its 45,000 instances represent a person, with 14 attributes that relate to demographic
and socio-economic features such as their age, education, marital status, and occupation. The binary
output variable records whether or not the person made <=$50,000 (converted to 0) or >$50,000
(converted to 1). This threshold would be equivalent to ~$100,850 in 2022 when adjusted for inflation.
We selected this dataset because it: (1) did not make the data science task overly cumbersome
due to esoteric data, and (2) was on a topic that people would have encountered before and formed
heuristics about. Similar to prior work [59], we synthetically introduced errors in this dataset to
quantitatively capture faulty reasoning about the data and model. We included two errors that
commonly occur in people’s day-to-day ML work: missing values and redundant features [59]. To
synthesize missing values, we replaced the age value with 38, the mean for all data points, for 10%
of the data points with an income of >$50,000. For redundant features, we relied on the pre-existing
redundancy in two features of the dataset, Education (a categorical variable) and Education-Num (a
nominal representation of the categories for Education).

3Colab notebooks available via this link. Additionally, Jupyter notebook versions of the Colab notebooks are included in the

supplementary material.
Chttps://archive.ics.uci.edu/ml/datasets/adult
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4.3 Choice of Model and Interpretability Tools

We selected ML models and interpretability tools based on their consistency in outputs and features,
and compatibility with the Colab environment. Our two glassbox conditions were built on the same
underlying model (GAMs). The blackbox conditions both used the same post-hoc explainer (SHAP)
and blackbox model (LightGBM). The LightGBM model outputs also matched the XGBoost model
used in our control condition. Additionally, the glassbox and blackbox conditions were consistent
in their explanation types and features. More details on these selections are included below.

4.3.1 Control Condition. Our control condition simulated a normal ML pipeline with no inter-
pretability options. We relied on a boosted tree model using the XGBoost library.” Control was
intended to be the hardest of the five conditions—participants had to find and add code for any
interpretable outputs they wanted for the model. XGBoost was selected primarily for the availability
of interpretable outputs for these models, with additional code. We included hints leading to these
outputs to avoid high drop off rates due to the condition being too challenging. For example, code
for global feature importances (a simple built-in function of the XGBoost model) and for partial
dependence values (a basic function from the scikit-learn library) was included. However, the latter
was a set of complex raw values in array form—participants would have had to search for the
equivalent plotting function to convert these into a visual output. The local explanations were the
most challenging missing piece in this condition. Ideally, the participants could have searched and
found an XGBoost explainer developed for local explanations on their own. To make this slightly
easier (and avoid high drop-off), we provided a link to the explainer,® but no code was included.
Participants were not required to use this feature and could rely on other Python libraries or built-in
functions. Indeed, while some participants used the linked explainer, others relied on their prior
knowledge of relevant statistical tests and descriptive plots.

4.3.2  Visuals-only Conditions. Static implementations of interpretability tools present visual out-
puts for global and local explanations and partial dependence plots per feature. These are available
for both types of interpretability approaches: glassbox models and post-hoc explainers for black-
box models. We considered several options for both types, eventually selecting the following
implementations due to their underlying consistency (as noted in prior work [59]).

Generalized Additive Models (GAMs). GAMs are a class of glassbox models which are inher-
ently interpretable. They explain predictions based on additive components, where each component
is a function that models an input feature. We used the interpretML implementation of GAMs
called Explainable Boosting Machines (EBMs) [89].” EBMs have built-in visualizations for global
feature importances, partial dependence plots, and local explanations (see Figure 5).

SHapley Additive exPlanations (SHAP). SHAP is a post-hoc explanation approach for black-
box models [77]. It explains each prediction by assigning optimal credit to each input feature using
Shapley values from cooperative game theory [112, 120]. We used the SHAP Python package'® which
provides local explanations for each data point. These are then aggregated to also present global
feature importances and partial dependence plots per feature (see Figure 1). LightGBM!! served as
our underlying blackbox model explained by SHAP. It follows a highly optimized tree-based gradi-
ent boosting approach which makes training the model extremely fast [60]. Additionally, the SHAP
implementation offers a separate, high-speed algorithm for tree ensemble methods like LightGBM.

https://xgboost.ai/

8XGBoost explainer was originally developed for R (the package and the corresponding blog post). The Python community
replicated this functionality in their module.

%https://github.com/interpretml/interpret/

Ohttps://github.com/slundberg/shap

Hhttps://lightgbm.readthedocs.io/en/v3.3.2/
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Fig. 3. The landing interface of Microsoft’s Explanation Dashboard with minor edits to reduce whitespace.
The dashboard includes several exploration sections. Here we show two of them, for Feature Importances
(A) and Counterfactuals (C). Each section has its own set of interactive visuals and controls. Users can view
aggregate or individual feature importances, and clicking on a feature bar shows the partial dependence
plot (the middle one here). There are several sorting and binning options for displaying this data (B). The
counterfactuals section allows users to select datapoints, view their local explanations (not shown here), and
create what-if counterfactuals (D) which opens a new pane with various editing and sorting options for the

suggested counterfactuals.
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Fig. 4. The landing interface of Google’s What-if Tool showing the Datapoint Editor. Users can access different
tabs related to the data, model performance, and features (A). Each tab has its own interactive elements with
a similar density of features as the Datapoint Editor. The scatter plot representing the data can be updated
based on several options, such as binning x and y axes and scattering data using different labels (B). Users can
also compute additional information about the datapoint, such as counterfactuals, local partial dependence
plots, comparison with the same datapoint’s prediction from a different model (C). Individual input feature
values are editable for interactive what-if testing, for the selected datapoint on the scatter plot (D). In our
case, the tool also provides SHAP attribution values as local explanations (D). The inference section for the
selected datapoint (E) allows users to get real-time predictions for any edited input features from (D).

4.3.3 Interactive Tools Conditions. Interactive interpretability tools present many of the same
visual outputs that static options do, but embed them in interactive features. These tools offer more
fine-grained exploration of the data and model, responsive Uls for comparing several datapoints
and features, additional metrics (e.g., fairness performance), etc. We picked the following two tools
over other options because they were the most similar in features, and they ensured maximum
consistency with the visuals-only conditions by supporting the use of the same underlying models.

Explanation Dashboard (ED). We used Microsoft’s Explanation Dashboard'? with EBMs for
consistency with our other glassbox condition. The Explanation Dashboard includes interactive
features for four avenues of exploration: (1) model overview, i.e., performance metrics and proba-
bility distributions for the data as a whole and for any user-defined data cohorts of interest; (2) data
analysis, i.e., data-centric statistics and plots (e.g., scatter, density) based on user-selected filters
for x and y axes; (3) feature importances, i.e., global explanations and partial dependence plots, and
local explanations and individual conditional expectation plots; and (4) counterfactuals, i.e., answers
to what-if questions about individual datapoints and perturbation-based analysis for how changes
in input features would affect the model’s prediction. Figure 3 presents a subset of these features.

2https://github.com/microsoft/responsible-ai-toolbox/blob/main/docs/explanation-dashboard-README.md
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What-If Tool (WIT). We used Google’s What-If Tool'® with the same underlying elements as
our post-hoc visuals-only condition: a LightGBM model and a SHAP explainer. The tool is divided
into three main sections: (1) a datapoint editor, for visualizing datapoints using scatter plots with
several options for binning the x and y axes, editing individual input feature values to test changes
in prediction, finding the nearest counterfactual, analyzing local feature importances, etc.; (2) a
performance and fairness tab for global metrics; and (3) a features tab, for data distributions and
descriptive statistics for each feature. Figure 4 presents the datapoint editor tab for WIT.

4.4 Components of the Survey

Table 2 provides an overview of the survey components in the order in which they were presented
to the participants, along with the corresponding dependent and independent variables. First, we
provided a brief overview of task and setup and obtained consent from the participants. This
was followed by questions about demographics (e.g., age, self-reported gender) and educational
background (e.g., level of education, occupation, time in their current job role, the extent to which
ML is part of their job, and familiarity with ML interpretability tools). Participants were next
introduced to the data science task setup, provided access to the Colab notebooks, and asked about
their familiarity with the model and interpretability options being used in their condition’s setup.

Next, in the main part of the survey, we asked them five multiple choice questions (MCQs)
about the data and model. Since this was the main data science element of the task, the questions
immediately after it covered self-reports on cognitive load using the six-item NASA-TLX question-
naire [39] and the usability of the setup using the eight-item SUPR-Q scale [108]. We also asked
them high-level evaluation questions about using the data and model in real-world applications,
and their confidence in whether the data and outputs from their setup were error-free.

By now, participants had some experience with the task setup. Therefore, we next asked an
exploratory multiple-answer question (borrowed from [59]) to understand their mental model
of the setup in their condition. We also included an open-ended free response question asking
participants to reflect on how they answered the questions in the study and their experience
with the overall setup. The survey concluded with three questions to contextualize the extent of
participants’ engagement with the setup: a rating question about the extent to which they relied
on the setup; and two yes-no questions on whether they read any documentation included for the
various models and tools used in the study, and whether they wrote any code of their own. We
include additional relevant details on the main elements below.

4.4.1 Multiple Choice Questions. The main portion of the survey consisted of a set of five MCQs
about the data and model."* These questions were related to the common ways in which ML
practitioners use interpretability tools [44, 59] (Table 2). Each MCQ had five choices that matched the
categories of our nominal dependent variable (response type), presented in a randomized order. The
response type can be accurate, plausible, or randomly inaccurate. Of these, the plausible category—
which represents a boundedly rational state—can occur due to the application of various heuristics.
We focused on two common heuristics relevant in this setting: the anchoring heuristic (wherein
people make decisions based on the piece of information they notice first [19]) and the availability
heuristic (wherein people make decisions based on incomplete information, using whatever comes
to mind immediately [124]). Naturally, the MCQ choices we generated for these plausible answers
were somewhat dependent on our own heuristics about income data. We tried to pick the heuristics-
based choices that were also mentioned most frequently in our pilot studies with ML practitioners.

Bhttps://pair-code.github.io/what-if-tool/
14 All MCQs with their corresponding answer options and hints are included in the supplementary material.
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Table 2. Questions included under each survey component and their corresponding dependent and indepen-

dent variables. Dependent variables are highlighted in gray.

Survey Component: Setup Familiarity

- Use of ML in their daily job (scale 0-7)

Prior Experience

- Total time estimate for how long they have been practicing ML (in months) with ML

- Familiarity with interpretability tools in general (scale 0-7) Prior Experience
- Estimated hours spent using interpretability tools (categories based on an with
upward-facing parabola, i.e., never, less than 10 hrs, 10-20hrs, 20-50hrs, | Interpretability
50-100hrs, and more than 100hrs; borrowed from [59]) Tools

- Familiarity with the specific model and interpretability option (scale 0-7)
- Estimated hours spent using this model and interpretability option
(categories based on an upward-facing parabola, same as above)

Prior Experience
with Task Setup

Survey Component: Multiple Choice Questions

- Global Feature Importance: If you were forced to remove a feature from
this model, which of the following features would you remove?

- Partial Dependence for a Feature: Which of the following ranges for Age
values has the most likelihood of making a high income?

- Predict the Outcome: Given the following input feature values and impor-

Time, Number of

tances, what do you think the model predicted for this individual and why? I-Xz(t;iied,
- Explain Misclassification: The model misclassified this datapoint with Response ,1}’ ’ .
the given input feature values. Why do you think that happened? P P
- What-if Question: A person with the following input features makes
<=50k income. A change to which of the following feature values would
cause the prediction to become 1 (i.e., >50k income)?

Survey Component: High-Level Task Evaluation
- Cognitive Load using NASA-TLX questionnaire [39] Cogpnitive Effort
- Usability of the setup using the SUPR-Q scale [108] Usability Score
- Use of this dataset for a loan approval prediction tool for a bank now,
in 2022 (scale 0-7) Hypothetical Use
- Possibility of this model’s deployment in the wild (scale 0-7) Rating

- Use of accuracy as a key performance indicator (scale 0-7)

- Confidence in their answers (scale 0-7)
- Confidence in the setup (scale 0-7)

Task Confidence

- Presence of errors related to missing values (scale 0-7) Error
- Presence of errors related to redundant features in the dataset (scale 0-7) Recognition
Survey Component: Mental Models
- Multiple-answer question with options representing established and in-
s . 1. . PR . Mental Model
tended capabilities of interpretability solutions (e.g., “individual instance ex-
» Accuracy

planations,” “counterfactuals,” “regions of error”, etc.); borrowed from [59]

Survey Component: Setup Engagement

- Extent to which they relied on the setup (scale 0-7)

Setup Reliance

- Read additional documentation about the dataset, model, or interpretabil- Read
ity options included in the setup (binary) Documentation
- Wrote their own code in the Colab notebook (binary) Wrote Code
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Fig. 5. Visualizations output by interpretML’s implementation of GAMs. These ones are generated for the
Adult Income dataset, same as our study task. Top (left to right): Global explanation; Local explanation for
an individual datapoint. Bottom: Partial dependence plot for a continuous input feature, age.

Therefore, our MCQs included choices that were: (1) accurate; (2) inaccurate; (3) plausible and
accurate, i.e., a response that is accurate and is also easier to reach based on a heuristic that people
commonly apply about the relationship between income and demographics; (4) visually plausible
but inaccurate, i.e., a response that is inaccurate but, when looking at the visual explanation charts,
easy to anchor to as the most obvious choice; and (5) heuristically plausible but inaccurate, i.e., a
response that is inaccurate but easy to reach based on a heuristic that people commonly apply
about the relationship between income and demographics. Additionally, each question included an
optional hint, which participants could access by clicking a “Hint” button. We recorded this button
click to calculate the total number of hints used by a participant.

For a concrete example of the answer choices, consider one of our MCQs: “Given the following
input feature values, what do you think the model predicted for this individual and why?” For the
interpretability conditions, this question included a visual of the local explanation for the datapoint
being considered, with the model’s prediction cropped out (e.g., Figure 5-top right). For the control
condition, we only provided the visual in the hint since local explanations are not featured in a
normal ML pipeline. The answer options for this question were: (1) accurate, “>50K income because
most of the features have a positive influence and it adds up to greater than negative influence;” (2)
plausible and accurate, “>50K because the values of input features for this person correspond to
those that have positive influence on income in the partial dependence plots;” (3) visually plausible
but inaccurate, “<=50k because the intercept has a significant negative influence;” (4) heuristically
plausible but inaccurate, “<=50k because the Marital-Status is ‘Never-married’;” and (5) inaccurate,
“<=50K income because the sum of all negative importances is greater than positive importances.”

4.4.2  High-level Task Evaluation. We included hypothetical questions asking participants to rate:
(1) the use of the dataset in the wild (“Consider the case of a loan approval prediction tool for
use by a bank now (in 2022). How would you rate the likelihood of this dataset being applicable
for predicting income in that setting?”); (2) the model’s readiness for deployment in the wild;
and (3) the use of accuracy as a key performance indicator. We also used self-reported ratings to
establish participants’ confidence in their answers and their data science setup. Recall that our
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modified dataset also included two errors, missing values and redundant features. We asked about
participants’ confidence that the dataset was error-free, specifically from these two errors (rated
individually), and any other errors that they might have noticed (open-text). All rating questions
were on an eight-point Likert scale to avoid neutral responses.

4.5 Dependent and Independent Variables

The five dependent variables were calculated based on people’s answers for the MCQs about the
data and model: (1) time, i.e., how long participants took to answer all five MCQs on average;15
(2) cognitive effort, i.e., total effort applied in answering questions, measured using the NASA-TLX
questionnaire [39]; (3) hints, i.e., the number of hints used (out of a total of five, one for each MCQ);
(4) accuracy, i.e., average correctness of responses across all five MCQs, where both accurate and
plausible and accurate responses were considered correct; and (5) response type, i.e., counts for
whether the MCQ option selected was accurate, plausible, or randomly inaccurate, across all MCQs.
The independent variables were calculated based on the remaining survey questions. Table 2
includes a full list of all variables of interest.

4.6 Analysis Methods

We used our pre-registered analysis methods for our dependent variables: one-way ANOVAs
followed by TukeyHSD post-hoc tests for continuous variables and Chi-square test of independence
for the nominal variable. We also include descriptive statistics and results from exploratory multiple
linear regressions and Pearson’s correlations for our independent variables. Several of these inde-
pendent variables were calculated based on responses to a set of similar questions. We established
internal consistency for these metrics using Cronbach’s alpha and Pearson’s correlation values,
and used averages depending on consistency outcomes. Participants answered one open-ended
question reflecting on how they accomplished the study task. We coded these responses using an
inductive thematic analysis [22]: open coding followed by axial coding, with themes generated by
affinity diagramming the axial codes.

4.7 Participants and Data

We advertised the survey on social media (e.g., Reddit, Twitter), messaging platforms (e.g., Discord,
Slack), and via mailing lists. People could only participate if they were over 18 years old and rated
their ML experience as at least 2 on a scale of 0-7; 21 people were excluded based on this criteria.
After filtering out 7 responses with spam-like text for our open-ended question, we were left with
119 total participants. These were split into conditions as: 25 to control, 24 to GAMs, 25 to SHAP,
22 to Explanation Dashboard, and 23 to What-if Tool. Participants rated their ML experience as 4.5
on average (0=1.7; scale 0-7) and had practiced ML for 40.2 months on average (0=22.65). The most
commonly listed job roles for them were data scientist (35 out of 119 participants), ML practitioner
(27), software designer/developer for a ML-based system (23), ML researcher (22), and ML engineer
(12). Participants were compensated with a $25 Amazon gift card upon completion of the study.
The study protocol was approved by the University of Michigan IRB.

5 RESULTS
5.1 Hypothesis Testing
Our results demonstrate a significant difference across conditions (control, visuals-only from GAMs

and SHAP, and interactive tools ED and WIT) for all dependent variables. Table 3 presents the

15We did not compare the overall study time across conditions to maintain procedural consistency with other metrics.
We were focused on the interplay between bounded rationality and the decision-making element of the task for all metrics.
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means, standard deviations, one-way ANOVA and TukeyHSD results for significance testing for our
continuous dependent variables (time, cognitive effort, hints, and accuracy). Further, a Chi-square
test indicates that our nominal dependent variable—a response type of accurate, plausible, or ran-
domly inaccurate, selected for the MCQs—is significantly different by condition with a large effect
size ()%(8, N=119) = 51.33, p«0.001, Cramer’s v=0.47). Figure 6 shows two plots: (1) residuals for the
three response types per condition, and (2) the relative contribution of each response type per condi-

residual?

tion to the total Chi-square score (calculated as a percentage for each cell). Additionally,

S PTIT
X°statistic
Table 4 provides exact counts for each response type per condition in a contingency table.

Explanation | What-if Tool Pairwise
Dashboard (ED) (WIT) Significance
Control > GAMs*
Control > SHAP*
Control > ED*
Control > WIT*
Control > GAMs**
Control > SHAP*
ED > GAMs***
ED > SHAP***
WIT > GAMs***
WIT > SHAP***
ED > GAMs***
ED > SHAP***
Control > GAMs***
Control > SHAP***
WIT > GAMs***
WIT > SHAP***
Control > GAMs*
Control > SHAP*
Control > ED**
Control > WIT*

Dependent Variable Control GAMs SHAP

Time (in minutes)
F(4,114) = 4.15, p<0.01 19.65 + 17.34 3.90 + 2.08 4.63 + 2.87 3.25+2.84 4.64 + 2.33
partial n? = 0.13

Cognitive Effort (1-7)
F(4,114) = 14.62, p<0.001 4.16 + 0.77 3.29 + 0.96 3.49 + 0.62 4.47 + 0.86 4.72 + 0.67
partial n? = 0.34

Hints (0-5)
F(4,114) = 14.45, p<0.001 3.08 +1.12 1.42 £+ 1.06 1.48 + 1.66 3.18 £ 1.30 3.52 +1.24
partial n? = 0.34

Accuracy (0-100)
F(4,114) = 3.92, p<0.01 59.20 £ 15.79 | 44.17 £ 19.54 | 42.40 + 15.62 40.91 + 22.66 41.74 + 21.67
partial n? = 0.12

Table 3. The results of our pre-registered analysis (one-way ANOVAs and TukeyHSD post-hoc tests) for the
continuous dependent variables. Each row represents a dependent variable with numbers for the ANOVA
results, means and standard deviations for each condition, and the conditions with a significant pairwise
difference based on the TukeyHSD tests. Significance levels are indicated as: *=p<.05, **=p<.01, ***=p<.001.
ANOVA results include a partial n? value for effect size; suggested norms: small = 0.01, medium = 0.06, large =
0.14. All of our dependent variables show a large effect size.

Control GAMs  SHAP ED WIT Control GAMs  SHAP ED WIT
4.69 42.94
3.97 38.65
Accurate@ 018 119 -1.32 (2,54 325 Accurate@ 006 277 337 1261 M., ..
2.52 30.06
1.8 25.76
Plausible (-2.42 0.32 -0.01 0.79 1.43 1.08 Plausible  11.41 0.21 0 1.22 3.99 21.47
0.35 17.18
-0.37 12.88
Inaccurate 232 -0.94 (1.88 042  1.01 ‘11;2 Inaccurate  10.48 172  6.89  0.34  1.99 i:g
-2.54 0

Fig. 6. Results of our pre-registered Chi-square test for the nominal dependent variable, response type. Left:
Residuals from the test, indicating directionality and effect of each response type-condition combination for
the magnitude of the resulting chi-square statistic. Right: contribution of each cell to the chi-square statistic
calculated as a percentage.
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Explanation = What-if Tool

Control GAMs SHAP Dashboard (ED) (WIT) Total
Accurate 69 39 32 27 21 188
Plausible 49 69 69 67 75 329
Inaccurate 7 12 24 16 19 78
Total 125 120 125 110 115 595

Table 4. Contingency table with counts for response types—accurate, plausible, and randomly inaccurate—for
all five conditions.

Plausible and Accurate Visually Plausible but Inaccurate
Heuristically Plausible but Inaccurate

Control 714 10.2 184
GAMs 18.8 725 8.7
SHAP 31.9 52.2 15.9
Explanation — s p—
Dashboard : : .
What-if Tool 32 40 28
0 20 40 60 80 100

Percentage of Plausible Responses

Fig. 7. Fine-grained breakdown of the type of responses selected under the plausible response type: plausible
and accurate, visually plausible but inaccurate, and heuristically plausible but inaccurate. The percentages
are calculated using the raw plausible response numbers in Table 4.

As hypothesized, participants spend significantly less time and cognitive effort when the setup
provides visuals from GAMs and SHAP, i.e., our visuals-only conditions (H1-2a). They also use
significantly fewer hints when they have access to these visuals (H3a). This supports our theory
that the cognitive framework of bounded rationality via satisficing is applicable in this ML and
interpretability context. With satisficing, it comes as no surprise that participants select plausible
response types when answering questions about the data (H4a). Table 4 presents the numbers
for each high-level response type: accurate, plausible, or inaccurate. As we noted in our setup, a
plausible response can also be accurate, leading to good outcomes from bounded rationality and
suggesting an optimizing cognitive mode. Unfortunately, the breakdown of the plausible response
type category in Figure 7 signifies that a large percentage of the plausible responses selected are also
inaccurate. This is primarily because participants selected the answer option that was visually the
most obvious choice, and sometimes because they selected the option that was inaccurate but easy
to reach based on a common heuristic. Further supporting this, the accuracy numbers—calculated
as the percentage of accurate and plausible+accurate responses to MCQs—are also significantly
lower for the visuals-only conditions (H5a).

We had hypothesized that the interactive nature of some interpretability tools might promote
more deliberative thinking and fewer instances of satisficing, i.e., encourage optimizing behavior
instead (H1-H5b). However, we do not find adequate support for this in our data. We do not see
any significant differences for time, accuracy or response type between the visuals-only conditions
and interactive interpretability tools (ED and WIT). All metrics continue to indicate satisficing
with significantly inaccurate outcomes when compared to the control condition. While we had
hoped that interactivity would make people spend more time with these tools, we instead find that
participants spend significantly more cognitive effort in navigating these tools’ features and need
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Fig. 8. Descriptive statistics for independent variables with noteworthy differences.

more hints to accomplish the task. The interactive tools are as challenging to use as the control
condition with no interpretability options (i.e., no pairwise differences in cognitive effort and hints
between the control condition and interactive tools). It is noteworthy that the averages for the
control condition for cognitive effort and number of hints used are lower than the interactive tools.

Overall, we find evidence in support of all of our satisficing-related hypotheses for the visuals-
only conditions and none for the optimizing-related hypotheses corresponding to our interactive
tools conditions (Table 1). People satisfice—resulting in significantly low accuracy—when using
any interpretability option.

5.2 Perceptions of the Setup

Figure 8 presents descriptive statistics for the independent variables for which we saw noteworthy
differences.!® These numbers reaffirm that, compared to the control condition, visual explanations
from interpretability tools lead to satisficing and interactivity does not help in this setting. Partici-
pants in the control condition were more conservative with their ratings for hypothetical use, and
their confidence in the task setup and their own answers. Further, these control condition partici-
pants read documentation and wrote their own code far more than those in the interpretability
conditions. The statistics for the interactive tools were similar to that of the visuals-only conditions,
with two exceptions: participants using interactive tools had lower mental model accuracy and
usability scores. In fact, mental model accuracy and usability were lowest with interactive tools.

Participants felt that the interactive tools were far more challenging to use. One reason for this
that came up frequently in answers to our open-ended question was that the these tools include a
plethora of information and features, both presented in a way that was “difficult to understand”,
“stressful”, and “burdensome”.

I thought the data science setup [Colab notebook] was fairly intuitive (training, test, etc.)
-> but the specific UI [interactive tool] to be extremely burdensome to navigate. There are a
ton of colors + words + toggles going on, such that it almost felt like too much of a burden
to actually derive the insights from the tool itself. (P103, What-if Tool)

The UI of the tool felt a bit buggy and was kinda annoying to use, required too many
clicks for one small change. (P3, Explanation Dashboard)

While some participants appreciated all the information that they could glean from the interactive
tools, it was often unclear how to interpret this information. Sometimes, it was hard to connect the

*Descriptive statistics for all independent variables are included as Appendix A.
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different types of information presented across different features. Other times, the same information
was presented in multiple ways without clarity on how to interpret it. The cognitive demands of
using the interactive tools led some participants to not take advantage of their features and outputs,
and instead use them in a limited way to confirm their own assumptions and narratives.

The reason behind satisficing seemed different for the visuals-only conditions. Participants
reported higher usability scores for these and believed that they could understand everything
very quickly. This fast-paced understanding of the model outputs “cross-verified their own under-
standing” and was in line with what “common sense would suggest.” It seems that the intuitive
type of information presented in visual explanations (e.g., global feature importance plots, partial
dependence plots) closed participants off to further exploration of their own and they engaged in
faster automatic processing under satisficing.

Surprisingly, the control condition seemed to be the best of both worlds: not too easy that people
could quickly apply visual heuristics, and not too difficult that they would be frustrated by the
cognitive effort needed and instead apply heuristics. The control condition was a normal ML setup
sans interpretability, so there were no immediate explanations available or visuals-based judge-
ments to be made. It required some cognitive effort, but seemingly not as high as the interactive
tools. We provided some links to modules that might help with understanding the model outputs,
but no actual code was included. The numbers from Figure 8-bottom row suggest that, in having to
read documentation and write or debug code, participants remained invested enough to carefully
look at any outputs.

Overall, our descriptive and qualitative analyses indicate that participants in all interpretability
conditions applied bounded rationality, although with two distinct behaviors: the visuals-only inter-
pretability tools resulted in quick, automated thinking and confirmation of people’s own narratives
(satisficing), whereas the interactive tools resulted in automated thinking to avoid the cognitively
burdensome nature of the setup (surviving). The control condition served as a more optimally ef-
fortful intermediate, where participants used the setup more deliberately by reading documentation
and writing code, and this did not feel too burdensome due to the hints included about the setup.

5.3 Exploratory Analyses

Now that we have established that people satisfice when using any interpretability options, we
consider the question: what kind of internal or external factors can affect satisficing? We test
two options: (1) cognitive factors (e.g., prior experience in ML), and (2) contextual factors (e.g.,
self-reported confidence, usability, etc.). Significance numbers reported in this section are only
meant for generating concrete hypotheses for future work.

5.3.1 Relationship between cognitive factors and satisficing. Results from fitting multiple linear
regression (MLR) models do not show any predictive relationship between our asymmetric cognitive
factors (i.e., prior experience with ML, interpretability in general, and the specific task setup) and
satisficing. That is, whether or not someone has this kind of prior experience does not change their
likelihood of satisficing. We also do not find evidence in support of a symmetrical relationship
between mental model accuracy and satisficing based on calculating Pearson’s correlation coeffi-
cients. That is, whether or not someone has an accurate understanding (mental model) of the data
science setup (i.e., the model and interpretability option) they are using has no bearing on if they
satisfice while using the setup.

However, prior experience and mental model accuracy do prevent people from anchoring to
the visually plausible but inaccurate response type. We know that an outcome of satisficing is that
people select plausible (over accurate) response options to questions about the data and model.
These are further categorized as: (1) plausible and accurate, (2) visually plausible but inaccurate, and
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(3) heuristically plausible but inaccurate responses. Results from fitting three MLR models—one each
for each of the three plausible response categories—show people with higher values for some prior
experience variables are significantly less likely to select the visually plausible but inaccurate type of
plausible answers (F(6,112)=2.99, p < 0.01, Adj-R? = 0.092).” Note that the adjusted-R? value here
is quite low—prior experience only explains a small amount of variance for visually plausible but in-
accurate responses. We also find a similar relationship between mental model accuracy and visually
plausible but inaccurate answers. People with higher mental model accuracy are also less likely to
select visually plausible but inaccurate answers when satisficing (Pearson’s r(117)=-0.27, p < 0.01).

Overall, cognitive factors do not prevent satisficing or support optimizing. But, more prior expe-
rience with the setup and higher mental model accuracy can both mitigate—to a small degree—the
immediate type of satisficing that results from a quick skim of the visuals output by interpretability
tools.

5.3.2  Relationship between contextual factors and satisficing. Results from fitting MLR models
show that higher usability can lead to significantly more satisficing. People who rate their task
setup as more usable expend significantly lower cognitive effort on the task and require fewer
hints to complete it.!® These cases represent satisficing since lower cognitive effort and the use of
fewer hints are proxies for it. Conversely, people who rate their setup as less usable expend more
cognitive effort and use more hints to complete the task. However, this is not necessarily a bad
thing. As we see with our control condition, higher cognitive effort and use of more hints can be
present in conjunction with higher accuracy. Additionally, when people with lower usability setups
do satisfice by selecting plausible response types, these are significantly more likely to be plausible
and accurate or heuristically plausible but inaccurate responses.'’ Therefore, with lower usability,
we can perhaps avoid the visually plausible but inaccurate responses caused by a very quick perusal
of the information being presented. The numbers in Table 4 and Figure 7 support this hypothesis.

For our symmetrical contextual factors, we find that higher accuracy significantly co-occurs with:
(1) people having lower confidence in their own answers, (2) people having lower confidence in
the study setup for their condition, (3) people thinking that the data and model have errors, and (4)
people thinking that the data and model cannot be used in hypothetical real-world usage scenarios.?’
Even when people satisfice and select plausible responses, these factors co-occur with plausible
and accurate response types rather than the plausible but inaccurate types.?! People with these
attributes either select accurate responses (maximizing) or plausible and accurate ones (optimizing).

7Coefficients for significant predictive relationships between the visually plausible but inaccurate response type and
people’s estimates for number of hours spent using: (1) interpretability tools in general (b=-0.13, #(112)=-3.03, p < 0.01);
and (2) their condition’s setup (b=-0.17, #(112)=-2.47, p < 0.01).

8Significant predictive relationships between usability and two dependent variables: (1) cognitive effort (F(4,112)=5.54,
p < 0.001, Adj-R? = 0.14; b=-0.36, £ (112)=-4.13, p < 0.001), and (2) the number of hints used ((F(4, 112)=6.02, p << 0.001,
Adj-R? = 0.15); b=-0.58, £(112)=-4.03, p < 0.001).

Significant predictive relationships between usability and two response types: (1) plausible and accurate responses
((F(1,115)=3.85, p << 0.05, Adj-R? = 0.02); b=-0.17, t(115)=-1.96, p < 0.05); and (2) heuristically plausible but inaccurate
((F(1,115)=7.79, p << 0.01, Adj-R? = 0.06); b=-0.19, £(115)=-2.79, p < 0.001).

XSignificant correlations between accuracy and people’s: (1) confidence in their answers to our study questions (Pearson’s
r(117)=-0.25, p < 0.01); (2) confidence in the study setup for their condition (r(117)=-0.28, p < 0.01); (3) error recognition
ratings (r(117)=0.30, p < 0.01); and (4) hypothetical use ratings (r(117)=-0.28, p < 0.001).

ZSignificant correlations between plausible and accurate response type and people’s: (1) confidence in their own

answers (r(117)=-0.30, p < 0.001); (2) error recognition ratings (r(117)=0.21, p < 0.05); and (3) hypothetical use ratings
(r(117)=-0.27, p < 0.01).
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Overall, we find that contextual factors do affect satisficing and optimizing behaviors. Higher
usability scores significantly predict satisficing. Lower usability scores are predictive of either a
different kind of satisficing (heuristically plausible but inaccurate response selection) or, interest-
ingly, optimizing (plausible and accurate response selection). Similarly, lower confidence, higher
skepticism about errors, and lower hypothetical use ratings—all seemingly negative user experience
design outcomes—are in fact related to selection of accurate or plausible and accurate responses.

5.4 Summary of Results

We find that people satisfice on an exploratory data science task when using visual explanations
from interpretability tools. Interactivity—a strategy commonly employed to promote deliberation
and engagement—does not help in this setting. Rather, interactive features make interpretability
tools cognitively burdensome to use. Our exploratory analyses indicate that cognitive factors
(e.g., prior experience in ML and interpretability) have no bearing on the likelihood of satisficing.
Instead, certain seemingly negative contextual factors (e.g., lower confidence and usability, higher
skepticism) co-occur with optimizing behavior (i.e., selection of accurate or plausible and accurate
responses during the task).

6 DISCUSSION

The core tenet of interpretability is “to explain or to present in understandable terms to a human” [25,
p2]. Interpretability approaches accomplish the “to explain” aspect of this—it is only due to these
approaches that we can shed light on the reasoning behind model predictions. However, user studies
with interpretability tools have all found them lacking on the “in understandable terms to a human”
front [9, 24, 59, 99]. There has either been an over-reliance on outputs from interpretability tools
or information overload based on their transparency, both findings also corroborated via different
conditions in our study. Prior work has touted explainability as the human-centered counterpart
of interpretability. Explainability incorporates insights from the social sciences and underscores
the need for explanations to be contrastive, modular, parsimonious, etc.—all characteristics of how
people explain things to each other [7, 82, 84, 87].

Regardless of a model-centric or human-centric approach for helping people understand ML, the
focus of these approaches is to design a human-understandable explanation. What is not considered
enough are fundamentals of how people understand. Bounded rationality is one such fundamental,
a cognitive framework that describes human nature and sensemaking in a way that has little to
do with the information that is presented to a human [114]. It asserts—and we have confirmed for
our specific ML setting with practitioners—that people do not process or evaluate information in a
perfectly rational way. This framework does not examine how people apply bounded rationality,
only that they do, and that they do it irrespective of the setting. How much they apply it might
vary depending on the criticality of the task or the type of information available, but people are
always boundedly rational. Presenting new information about the model, presenting it in a way
that is easier for people to parse, all of these facets of designing interpretability and explainability
tools: they assume perfect rationality. They assume people’s desire to obtain information. And
yes, people do want information, but only insofar as they can use it to attain a “good enough”
understanding of the model. Failing to recognize this is why interpretability is currently broken.
These approaches do enable explanation and interpretation, but they do not ensure cognition.

We put forward the following question for the research community: what would it mean to
design interpretability and explainability knowing what we now know about bounded rationality?
Put another way, how do we present information to people knowing that they will satisfice and
never pay attention to all of it?
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Fig. 9. Updated overview of our study conditions using our proposed framework for human cognition in
Machine Learning settings. Compared to our hypothesized quadrants in Figure 2, the unexpected results
are highlighted in color.

6.1 Implications for Design

We present the following implications for how existing interpretability tools are used by a key
stakeholder—ML practitioners—for an exploratory data science task, and how we can improve their
use of these tools going forward.

Interactivity can do more harm than good. In theory, interactivity should help improve
engagement with any system [122]. Keeping people engaged should, in turn, have a higher likeli-
hood of preventing heuristics-based, automated information processing [94, 121]. This is not quite
true for how interactivity is incorporated in existing interpretability tools or how they are used
by ML practitioners [28]. Interactive features complicate existing tools to the extent that people
do not want to expend the high cognitive effort necessary to make sense of the features and the
information they convey. Participants’ responses to their experience with these tools suggest a case
of the law of diminishing returns [113]: the additional information and reactive interface elements
do not add value corresponding to the effort needed to adequately understand them. Indeed, we
believe the interactive tools conditions, as currently designed, end up falling under the surviving
cognitive mode rather than our hypothesized optimizing one (Figure 9). Based on our results, we
propose thinking through the following initial questions for designing better interactivity for this
setting: (1) how can we help people craft questions for further exploration using interactive features
instead of simply seeing various interactive outputs?; (2) how can we design interactive features
in conjunction with other forms of engagement (e.g., writing code)?; and (3) must interactivity be
context-free or can there be a narrative to how interactive explanations are presented?

Experience-based cognitive factors do not help. Whether or not someone has prior expe-
rience in ML, interpretability in general, or the specific interpretability setup of their condition,
had no bearing on their likelihood of satisficing in our study. Mental model accuracy similarly
had no impact. Sure, experience might prevent the immediate satisficing that is a result of a quick
perusal of information, but it does not guarantee the absence of other heuristics (e.g., “I've looked
at similar datasets and models in the past, so I am able to guess which features may be correlated
with each other and how they may be correlated with the response.” (P34, GAMs); “I used most of
my common sense to understand the questions. Income is going to increase with age, occupation
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and hours of work per week. Even without looking at feature importance, I could make guesses of
the prediction and answering the question” (P108, WIT)). The application of heuristics to answer
questions seems related to cognitive effort. We find that people either apply heuristics because the
cognitive effort needed to understand the visuals is so low that they make quick judgements based
on the information, or so high that they are frustrated and do not want to use the tool for long.

Optimally effortful designs can help. The quadrant that remains unexplored with current
interpretability solutions corresponds to low cognitive effort-high time which, we believe, would
result in the optimizing cognitive mode. Our hypothesis here is grounded in the results for our
control condition (Figure 9). Control was intended to be our most challenging condition; to avoid
making it too cumbersome for a study, we included links to some helpful modules. It seems that this
struck that balance between too helpful (satisficing) or too frustrating (surviving), and increased
people’s likelihood of reading documentation and writing code, i.e., staying invested enough to
veer towards optimizing. The cognitive effort was not insignificant (4.16 on average on a scale of
1-7)—there is potential for interpretability tools to improve upon this control setup.

Seemingly negative contextual factors are surprisingly helpful. Features that are normally
considered negative in the context of user experience design are correlated with higher accuracy
in this context. Lower usability and confidence, and higher skepticism, were all related to accu-
rate understanding of the data and model. Research and application areas that require optimal
information processing have often relied on similar, seemingly negative, strategies to ensure user
engagement. For example, the visualization community argues for highlighting the uncertainty
of the underlying data in visuals [36, 49, 105, 132], or using surprise (e.g., Bayesian surprise that
models information entropy [8, 10, 51]) and emotion [18, 63] to catch people’s attention. Similarly,
ubiquitous computing researchers and designers now emphasize seamfulness in their designs,
adding uncertainty, ambiguity, and opportunities for user-appropriation instead of only prioritizing
seamlessness, simplicity, consistency in features and interactions, and ease of use [17, 50, 129].
Even scholars in the explainable Al community have recently suggested that these negative con-
textual factors (seamfulness, criticism, forcing functions, etc.) might be a promising direction for
appropriate use of Al explanations [13, 31, 58, 61].

Balancing efficiency and ease-of-use with emphasizing negative or imperfect aspects is known
to be an effective strategy for sensemaking in both human-human and human-machine contexts.
Indeed, organizations operating in critical domains are often failure-centric, and employ red teaming
and adversarial design to simulate situations for testing the limits of their human and machine
operations [135, 136]. Although it has shown merit as an approach for debugging intelligent
systems and ML models [1, 15, 57, 69], this class of solutions is relatively unexplored for designing
interpretability tools. We hope future work will incorporate these ideas towards designing more
human (cognition)-centered interpretability and explainability.

7 LIMITATIONS

Bounded rationality is an abstract construct, and studying it quantitatively comes with the
limitation of establishing construct validity. We made assumptions about proxies for bounded
rationality and how we could operationalize these for the ML context. Although our assumptions
were grounded in theory and prior work, we cannot be sure that these reflect bounded rationality in
practice, especially for domains like ML and interpretability in which it has not been studied before.
Specifically, recording time in a way that also represented the time spent on data exploration before
answering each question was particularly hard. Additionally, the intricacies of bounded rationality
are highly dependent on the varied heuristics that people develop (and update) over time and on
the setting. We had to enforce consistency on an otherwise personalized construct, and it is unclear
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what level of impact this had on our results. Similarly, it could be that the high values for cognitive
effort and hints had more to do with how we designed and explained the study and setup, rather
than the specific outputs and interactivity of the interpretability tools. Although we believe this to
not be the case given the positive comments about the ease of the Colab + Qualtrics combination
from the participants, we cannot be sure if there were any confounds introduced due to the setup.

Not only is human cognition via bounded rationality highly personalized, so is data science,
making generalizability extremely challenging for studies like ours. Given our research goals of
finding initial evidence of the role of bounded rationality in ML and interpretability settings, we
focused on internal and ecological validity, but this affected the external validity of our setup and,
consequently, its generalizability. ML Practitioners have a plethora of models and tools available
to them and they use these in unique ways. Since it was infeasible to use people’s varied local
setups for a controlled experiment, we had to find a balance between consistency and rigidity for
our study. Indeed, the generalizability of our results is dependent on how participants used our
setup in comparison to their own ML pipelines. Perhaps future work can run similar studies within
organizations that have uniform setups and benchmarks for their ML practitioners.

Our choice of task and questions also likely affected the generalizability of our results. While
most ML practitioners have at some point conducted similar exploratory data analysis to what
we asked for in our study, the majority of our results were calculated based on asking them very
specific MCQs during and after their exploration. Although the study design decisions we made
were necessary for a controlled experiment, our results could potentially change based on a different
task, setup, or set of questions asked during the study. An easier task and setup might not require
the same level of cognitive effort to begin with. This might in turn encourage people to spend more
time interacting with the ML model and interpretability tool, as we hoped with the optimizing
quadrant of my bounded rationality framework. Adding monetary incentives based on performance
might improve performance as well, although we believe these need to be quite significant if the
participants involved are ML practitioners with full-time jobs. Recent work does suggest that these
variations can affect the metrics being studied here. For example, with a different task (solving a
maze), changing monetary compensation based on performance, and varying explanation difficulty,
Vasconcelos et al. [127] find there to be less over-reliance on Al outputs and explanations. How-
ever, they similarly note the need for something—adequate cognitive forcing functions, monetary
rewards or other incentives, or task enjoyability—to ensure appropriate use of explanations.

Another type of variability that likely affected the generalizability of our findings is in the stake-
holders themselves. We investigated the use of interpretability tools by ML practitioners, whom we
defined very broadly as people with some prior ML experience. Changing this inclusion criteria and
studying bounded rationality with other stakeholders will likely require different setups, and have
slightly different outcomes. Given the evidence of bounded rationality in many human-human
decision-making settings, we expect that this concept will be applicable to many human-machine
settings like ours, but the exact mechanics of how (much) that will be are out of scope for this
paper. The role of bounded rationality in human-machine interaction more generally is likely quite
varied. We hope future work will dig deeper into this cognitive framework.

Finally, as we continue to study interpretability and explainability using controlled experimental
setups, consistency in the metrics used to evaluate these approaches is also critical. We relied on
one set of metrics and validated scales to do so. More recently, researchers have also proposed
scales specific to human-Al interaction and explanations [45, 46, 141]. An interesting avenue of
future work would be to compare and contrast interpretability tools using different scales. It would
help us understand the kind of signals we can capture about people’s use of interpretability and
explainability tools in making decisions about their Al and ML decision-support counterparts.
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8 CONCLUSION

Interpretability and explainability are purported to be solutions for helping people understand ML
models and their predictions. We present results from a pre-registered controlled experiment with
ML practitioners (N = 119) which provide significant empirical evidence that interpretability tools
lead people to satisfice when trying to understand ML outputs. Compared to a control condition
sans interpretability, people who rely on visual explanations from interpretability tools spend 5x
less time on the task, resulting in a 17% lower accuracy in answering questions about the data and
model. We had hypothesized that interactivity might prevent satisficing but do not find this to be
true. Rather, interactivity increases cognitive burden to the extent that people satisfice—seemingly
out of frustration—instead. We argue for a paradigmatic shift in how interpretability solutions
are currently designed, with the knowledge that people never pay attention to all the information
available to them.
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A DESCRIPTIVE STATISTICS

Figure 10 presents descriptive statistics for all the independent variables in Table 2. The values
for two variables are averaged across the questions asked about them because of high internal
consistency in their responses. First, hypothetical use rating, since Cronbach’s Alpha for the three
ratings questions (the use of the data and the model in the wild, and the use of accuracy as a key
performance indicator) was @=0.73. This & value is acceptable for exploratory research [91]. Second,
error recognition, since the ratings for the two error-related questions about missing values and
redundant features were strongly correlated (Pearson’s r(115)=0.76, p < 0.001).
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Fig. 10. Descriptive statistics for all the independent variables in our study.
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