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Figure 1: PaperTrail system architecture showing the three-stage pipeline for argument-grounded provenance. Paper PDFs

and user-LLM dialog feed into the Argument Extraction Engine, which combines three different extraction methods deployed

strategically across pipeline stages based on design-time tradeoffs between computational cost and semantic capability. The

system produces claim-evidence annotations that power the PaperTrail interface for scholarly question-answering.

Abstract

Large language models (LLMs) are increasingly used in scholarly
question-answering (QA) systems to help researchers synthesize
vast amounts of literature. However, these systems often produce
subtle errors (e.g., unsupported claims, errors of omission), and
current provenance mechanisms like source citations are not gran-
ular enough for the rigorous verification that scholarly domain
requires. To address this, we introduce PaperTrail, a novel inter-
face that decomposes both LLM answers and source documents into
discrete claims and evidence, mapping them to reveal supported
assertions, unsupported claims, and information omitted from the
source texts. We evaluated PaperTrail in a within-subjects study
with 26 researchers who performed two scholarly editing tasks
using PaperTrail and a baseline interface. Our results show that
PaperTrail significantly lowered participants’ trust compared to
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the baseline. However, this increased caution did not translate to
behavioral changes, as people continued to rely on LLM-generated
scholarly edits to avoid a cognitively burdensome task. We discuss
the value of claim-evidence matching for understanding LLM trust-
worthiness in scholarly settings, and present design implications
for cognition-friendly communication of provenance information.
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1 Introduction

The accelerating growth rate of scientific literature presents excit-
ing opportunities for advancing knowledge, yet creates significant
challenges as domain experts face escalating cognitive demands in
monitoring and synthesizing knowledge within their fields [16, 36,
43, 44, 64]. Large language models (LLMs) have emerged as promis-
ing solutions for this information overload crisis [27, 45, 58]. LLMs
are leveraged by end-users for a variety of scholarly tasks [51, 74],
and are being integrated into scholarly question-answering (QA)
systems like Semantic Scholar’s “Ask This Paper”[111], JSTOR’s
AI research tool [48], and Elicit AI [126], as well as general search
applications [121]. These tools promise to transform scholarly set-
tings by automating synthesis, accelerating systematic reviews from
months to hours, performing intelligent citation analysis, and iden-
tifying research patterns and gaps [91, 126]. Moreover, emerging
LLM-based research agents like DeepResearch [4] and Google’s AI
Co-Scientist [37] are presented as able to autonomously conduct
literature reviews and even generate research hypotheses.

The promise of automated research processes remains critically
undermined by persistent limitations in the reliability of LLM-based
systems. While LLM-augmented scholarly tools generate fluent and
authoritative-sounding outputs, they inherit the same ethical issues
and harms as their base models [12, 60, 125]. They particularly
risk introducing errors due to their propensity to hallucinate in-
formation [42, 46, 75, 85]. These errors are difficult for scientists
to detect [9], and persist even in Retrieval-Augmented Generation
(RAG) systems, designed to be more reliable by grounding their
generations in a corpus [87]. These errors carry particularly high
stakes in academic contexts where domain experts require precise
information for literature reviews, peer assessment, and research
design. Finally, LLMs can spread misinformation [59, 127], spurring
concerns that relying on ungrounded information systems will
result in error propagation through scholarly discourse [29].

Predicting erroneous outputs and understanding the full capa-
bilities of LLMs is difficult [33]. Current mechanisms for trust and
reliance calibration in LLM outputs are limited, and offer insufficient
affordances for a setting like scholarly QA. For example, source
citations for attribution in LLM responses can improve perceptions
of trust, but have been found to sometimes be hallucinated or in-
accurate in representing the source material [19, 89, 120]. Similarly,
uncertainty visualization methods like confidence highlighting can
reduce over-reliance [15], but rich explanatory information often
increases cognitive load [1] without providing actionable paths
for evidence validation . Approaches combining sources with ex-
planations are promising but remain vulnerable to an “illusion of
explanatory depth” where users overestimate their understanding
without actually verifying evidentiary support [20, 55]. However,
fostering appropriate trust is not merely amatter of providing better
information. Scholarly work occurs under time pressure and cogni-
tive load—conditions that may prevent researchers from acting on
their skepticism even when they recognize potential problems. Un-
derstanding how designs for trust and reliance calibration interact
with these practical constraints is essential for developing effective
scholarly AI tools.

In this work, we design a novel provenance mechanism for LLM
outputs in scholarly QA settings, grounded in the argumentation

structures inherent to scholarly work. We build on research that
shows how structured representations of claims and evidence can
improve interpretability [86, 104]. Argumentation structures offer
promise for scholarly QA because they mirror academic discourse
structures, where claims are supported by evidence connected
through warrants; scientific papers inherently follow these argu-
mentation patterns [38, 65]. Our system, PaperTrail, makes these
implicit structures explicit through claim-evidence matching be-
tween a source document corpus and LLM responses to user queries
for scholarly QA. It presents this provenance information via inter-
face indicators that provide immediate visual feedback to the user
by showing unsupported answer claims and omitted paper claims.
Our design leverages domain experts’ existing mental models of
how scholarly arguments work, which has the potential to enable
more efficient verification than generic explanation approaches.

We evaluate PaperTrail and our argument-grounded source
provenance approach through a within-subjects user study involv-
ing 26 domain experts recruited from a research organization. We
compare our setup against a baseline of source citations for at-
tribution, common in commercial LLM-based search tools. Our
participants complete two scholarly tasks where they are asked
to edit LLM-generated text after a QA session with the LLM in
question. We measure three outcomes of provenance information
presentation: subjective trust perception [41], self-confidence in
participants’ revised outputs, and behavioral reliance quantified via
normalized Levenshtein edit distance between the original LLM-
generated text and the participants’ edited versions.

Our results show that granular claim-evidence provenance infor-
mation encourages more caution towards LLM outputs in scholarly
settings. People trust in LLMs is significantly lower after using
PaperTrail compared to baseline. However, this change does not
translate to differences in perceived confidence or, importantly,
changes in reliance behaviors. Experiential measures of usability
and qualitative feedback suggest that, while helpful, this additional
argument-grounding information clutters the interface and reduces
usability, especially given the time constraints of a study setup.
However, participants consistently appreciate the ethos of receiv-
ing this detailed breakdown of LLM arguments. We discuss the
value of our argument-grounded source provenance approach for
establishing trustworthiness of LLMs in this scholarly context, and
discuss design implications for further reducing the cognitive load
of presenting this additional information.

This work makes the following contributions to human-AI col-
laboration in information-intensive contexts:

• The design and implementation of PaperTrail, a novel sys-
tem that operationalizes argumentation structures for source
provenance by decomposing and linking claims and evidence
between LLM-generated answers and source documents.

• A flexible backend architecture for claim-evidence extraction
that can serve as an interactive tool and as a framework for
evaluating LLM trustworthiness in scholarly settings.

• Empirical evidence from awithin-subjects study showing the
value of claim-evidence provenance in calibrating trust com-
pared to standard source-citations from commercial LLMs.

• Empirical evidence of a trust-behavior gap in scholarly LLM
use, showing that reduced trust alone is insufficient to change
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reliance behaviors without addressing systemic constraints
of time, usability, and cognitive resources.

2 Related Work

2.1 Evidence-Based Text Generation,

Attribution, and Provenance

Recent surveys position LLM sourcing as a critically important de-
sign problem. Schreieder et al. [109] survey evidence-based text gen-
eration across 134 systems that use source material to groundmodel
outputs in external evidence. Pang et al. [92] distinguish provenance
at the levels of model authorship, model structure, training data,
and external data, and separate prior-based approaches that em-
bed explicit markers from posterior-based approaches that infer
provenance from observed behavior. Within this broader sourcing
landscape, Li et al. [71] focus on external-data sourcing for ques-
tion answering, formalizing attribution as mapping each answer
statement to one or more cited passages and evaluating methods
in terms of citation coverage (recall) and sufficiency (precision).

Across these surveys, most systems attach provenance at doc-
ument, paragraph, or sentence granularity and treat attribution pri-
marily as a backend or benchmarking problem: how to retrieve bet-
ter evidence, assign more accurate citations, or define more faithful
automatic metrics. Coarse-grained citations lead to familiar failure
modes such as granularity errors, mistaken synthesis across sources,
and hallucinated statements when complex answers are supported
only by flat sentence-level links [71], and little work studies how
experts actually use provenance cues in context. In Pang et al. [92]’s
terms, our system is a posterior external-data sourcing system: we
do not modify model weights or embed watermarks, but instead in-
fer and expose how an LLM answer relates to a fixed corpus of schol-
arly articles at interaction time. Building on the attribution formu-
lation of statement-plus-citations [71], we instantiate provenance
at a finer granularity by decomposing both papers and answers
into discrete claims, aligning answer claims to paper claims and
evidence snippets, and making omissions and mismatches explicit.

2.2 LLMs and Explanations

Prior work in human-centered AI asks not only what information
LLMs should expose, but also how such cues can shape people’s
trust perceptions and reliance behaviors. Approaches towards trans-
parency, including model reporting, evaluations, explanations, and
communicated uncertainty, can be a means to support people in ap-
propriate trust calibration, particularly when tailored to stakeholder
goals and contexts [73]. Recent behavioral studies probe which cues
actually foster appropriate reliance. Uncertainty cues were found
to help reduce overreliance [54] and confidence highlighting were
found to help users catch errors [117] in two recent lab studies.

It is important to consider which kinds of transparency impact
behavior. Kim et al. [55] found that explanations overall tend to
increase reliance on both correct and incorrect answers, while veri-
fiable sources help reduce overreliance when the model is wrong
and support appropriate reliance when it is right; they also identify
“inconsistencies” as a distinct unreliability cue in LLM outputs [55].
In controlled reliance interventions, simple, persistent disclaimers
can be effective, while token-level uncertainty cues or removing di-
rect answers reduce overreliance but often at time costs and without

reliably improving appropriate reliance [15]. For domain experts
using retrieval-augmented generation (RAG) systems, surfacing
sources and uncertainty interacts with users’ verification practices
and trust, which shows the importance of provenance cues in ex-
pert workflows [101]; such interventions can also assist domain
experts in identifying confabulations in RAG-based systems [102].

2.3 Argument Structures in Textual Contexts

Our interface foregrounds claims and the evidence that supports
them based on argumentation theory. In predictive-advice settings,
structuring justifications with Toulmin [119]’s argument structure
components (data, warrants, backings, and rebuttals) selectively
strengthens distinct trusting beliefs, suggesting that showing what
the claim is and why it might not hold can calibrate trust more effec-
tively than undifferentiated explanations [104]. In scholarly writing
specifically, argument structure underlies rhetorical function. Re-
cent work augmented a scientific corpus with argumentative com-
ponents and find that coupling argument extraction with rhetorical
tasks in multi-task machine learning improves performance, and
that argument components are most tightly linked to discourse
roles [65]. We draw on this finding to propose that claims and
evidence are the right unit to expose for scholarly sense-making.

We also build on work that evaluates argument-based explana-
tions as user-facing artifacts. In medical QA, a recent study mined
argument components and assessed explanation structure via graph
patterns (e.g., missing premises, inconsistent support/attack) [86].
They found that people benefit when explanations are explicitly
organized as arguments rather than free-form text. Beyond pro-
fessional domains, an educational psychology study shows that
recomposing arguments with Toulmin elements can measurably
improve critical-thinking skills [99].

2.4 Scholarly Question Answering

Work on scholarly question answering (QA) clarifies both the task
demands of answering research questions from papers and the inter-
face signals needed for credible use. Scholarly corpora such as Pub-
MedQA [47] and Qasper [23] establish that answering researcher-
style questions requires reasoning over long, technical texts rather
than factoids. More recent studies broaden the space to knowledge-
graph QA [8], large-scale science QA [106], expert-authored long-
form questions with attributed answers [81], multi-document /
multimodal settings [70, 98], and exam-style free-response evalua-
tion [26]. Scholarly QA evaluation show limitations of LLM-based
QA systems. Long-context models still degrade with text distance
[40], retrieval-augmented models can fabricate supporting evidence
in science tasks [87], and domain experts judge model outputs as
coherent yet inconsistently accurate [94]. Martin-Boyle et al. [84]
developed an expert-derived schema identifying specific error types
in scholarly QA, which goes beyond inaccuracies and hallucina-
tions to describe issues with synthesis, formatting, question inter-
pretation, and completeness. These performance issues motivate
attribution-first interfaces that make evidence not only available to
users, but also intelligible.

Argument structures are important to several works on Scholarly
QA. Scientific claim verification shows the importance of aligning
claims with cited evidence in open domains [122]. More recently,
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SciClaimHunt introduces large-scale scientific claim-verification
resources [61]. Such argumentation-forward resources show that
scholarly discourse is naturally structured around claims, supports,
and rebuttals [105], and that LLMs evaluated as science communi-
cators can appear persuasive while remaining unreliable [9], which
shows the importance of foregrounding verifiable sources. Finally,
HCI perspectives urge centering domain experts’ values and work-
flows in NLP tools [114, 128], and QASA [68] contributes a scholarly
question taxonomy and full-stack reasoning setup that our work
leverages. Our research extends this line of inquiry by looking at
how a claim-evidence-based user interface affects trust perceptions
and behavioral reliance during scholarly writing and critique.

3 PaperTrail: a Scholarly Source Provenance

System

We implemented a novel system to investigate how argument-
grounded provenance affects user trust and reliance in LLM-based
scholarly QA. The system generates and displays claim-evidence
structures from both a corpus of source documents and real-time
LLM-generated answers. Below, we first describe our backend archi-
tecture, in particular our novel argument extraction and matching
engine for determining source provenance; followed by our design
goals and frontend interface.

3.1 Backend: Argument Extraction and

Matching for Grounding Provenance

To generate the argument-grounded provenance annotations in-
tended to help users appropriately calibrate their trust and reliance,
we developed an Argument Extraction Engine that combines three
approaches to claim and evidence extraction, each offering differ-
ent tradeoffs between computational cost and semantic capability.
LLM-based extraction leverages LLMs’ semantic understanding
to identify claims and evidence based on few-shot prompting, with
their linguistic understanding offering a more nuanced interpreta-
tion of scientific discourse. While computationally expensive, this
approach produces natural language representations that align with
human categorization and can capture semantic meaning beyond
surface-level text similarity [95]. Similarity-based extraction

uses a sentence-transformer model and cosine similarity for rapid
filtering and deduplication. This lightweight approach offers speed,
interpretability, and reliability for high-volume operations where se-
mantic nuance is less critical. Retrieval-Augmented Generation (RAG)

combines retrieval efficiency with LLM semantic understanding by
first filtering content using similarity search, then applying LLM
processing to the reduced set. This hybrid approach reduces com-
putational cost compared to applying LLMs to full documents by
limiting the candidate set.

We deploy these methods at different pipeline stages based on
stage-specific requirements: whether a user query is available to
guide relevance filtering, whether processing occurs offline or in
real-time, and the volume of text to be processed. The resulting
three-stage pipeline consists of: offline paper-level extraction of
claims and evidence for a source document corpus (Section 3.1.1);
real-time answer-level extraction for LLM-generated scholarly QA
answers (Section 3.1.2); and real-time claim-evidence matching to

calculate argument-grounded source provenance between scholarly
documents and real-time LLM answers in QA (Section 3.1.3). The
pipeline is served by a Flask web server that provides a RESTful
API, session management, interaction logging, and static content
delivery. See Figure 2 for an illustration of the backend stages.

3.1.1 Stage 1: Paper-Level Claim-Evidence Extraction. We construct
a corpus of scholarly documents structured into claims and evidence
through one-time offline preprocessing, where computational cost
is less constrained than in real-time operations. We preprocess each
document by extracting the text using PyMuPDF v1.23.5,1 followed
by manual validation to ensure accuracy. We reviewed the prepro-
cessed text against the original PDFs to check for the correctness of
extracted mathematical notation; correct preservation of paragraph
boundaries; and accurate handling of hyphenated words across line
breaks. The plain text is programmatically segmented into sections
and paragraphs to maintain contextual coherence and to allow for
detailed claim extraction.

For claim extraction in this offline setting, we use LLM-based extraction

where each paragraph is provided as context to Gemini 2.5 Pro [31]
using a few shot prompt inspired by the work of Kumar et al. [61]
and Toulmin [119]’s argumentation model. This prompt provides
10 examples of claims randomly selected from the SciClaimHunt
dataset [61] and instructs the model to identify and extract distinct,
verifiable scientific claims. Following Kumar et al. [61], we specify
that claims should be atomic, faithful, and decontextualized. Draw-
ing on Toulmin [119]’s argumentation framework, we additionally
require claims to be verifiable (checkable against evidence) and
declarative (statements rather than questions or method descrip-
tions). Kumar et al. [61] validated these criteria through human
annotation of 100 claims, achieving inter-annotator agreement of
𝛼 = 0.69–0.78 across dimensions. We adopted their methodology
and qualitatively spot-checked claims extracted from one paragraph
from each of the Introduction, Methods, and Results sections from
each paper. These sections represent distinct discourse functions,
where Introductions contain motivational and background claims,
Methods contain procedural claims, and Results contain empirical
findings; we wanted to verify that the extraction prompt handled
this variation appropriately. This spot-check confirmed that ex-
tracted claims generally satisfied the five criteria from [61, 119]
noted above. We cover details on our quantitative evaluation of this
approach in Section 4 below.

We use LLM-based claim extraction here despite its computa-
tional cost for two reasons. First, without a query to inform rele-
vance filtering, we must extract all potentially relevant claims from
the corpus comprehensively. Similarity-based filtering or RAG ap-
proaches require a query as a reference point for relevance scoring.
Second, the offline nature of this preprocessing step makes the
computational expense acceptable, as it occurs once per document
rather than in real time. While we could have eliminated the prepro-
cessing step and only extracted paper claims in real-time using the
user’s query to identify relevant paper claims, this would introduce
additional latency into every user interaction. Pre-extracting all
claims allows us to more quickly identify relevant claims by search-
ing an already-processed corpus. This shifts the computational
burden from synchronous user-facing operations to asynchronous
1https://pypi.org/project/PyMuPDF/, GNU Affero General Public License

https://pypi.org/project/PyMuPDF/
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preprocessing. It also makes the interactions more consistent across
users, because offline preprocessing creates a single ground truth.
Additionally, pre-extraction enables reproducible results and allows
the claim-evidence corpus to be versioned and audited indepen-
dently of the real-time query processing pipeline.

Finally, in the evidence retrieval stage, we use Similarity-based extraction ,
where the claims extracted previously are used as queries to find
their supporting evidence within the source text. Sentences exceed-
ing a similarity threshold of 0.75 (based on guidance from Kumar
et al. [61]) are considered candidate evidence for a given claim. To
improve the readability of the extracted evidence, the preceding
and subsequent sentences surrounding each evidence snippet are
included as context to reconstruct coherent snippets. We use low-
cost similarity-based extraction for evidence retrieval because this
stage serves only as an initial filtering step to identify potentially
relevant passages. The semantic relevance of this evidence to a
user’s specific information needs is later determined by LLM-based
processing during the real-time claim-evidence matching phase
(Section 3.1.3), where the user’s query provides the necessary con-
text for selecting the most pertinent evidence. At this preprocessing
stage, we simply need to establish which text segments have any
topical relationship to each claim—capturing passages that men-
tion the same concepts, entities, or phenomena. This broad initial
retrieval ensures comprehensive coverage while deferring the com-
putationally expensive task of determining contextual relevance
until it can be informed by the user’s actual query.

The output of this preprocessing pipeline is a single JSON file
containing a structured list of all paper claims including each claim’s
associated evidence, citation, and section name. This file is loaded
by the backend server at startup and serves as the ground-truth
knowledge base for PaperTrail.

3.1.2 Stage 2: Answer-Level Claim-Evidence Extraction. Real-time
answer-level extraction involves two distinct models serving differ-
ent roles: an answerer LLM that responds to user questions, and an
extraction LLM that decomposes these answers into claims and
evidence. This separation ensures that the answer generation re-
mains focused on content quality while the extraction process main-
tains structural consistency with how paper claims were processed.

When a user asks a question during the interactive session, the
answerer LLM first generates a complete answer based on the
query, conversational history, and task context. In our study con-
figuration, the answerer LLM receives the source documents as
context alongside the query, similar to document-grounded ques-
tion answering in commercial LLM interfaces where users upload
PDFs and ask questions about their content. While this differs
from RAG-based systems that retrieve relevant passages based on
the query, PaperTrail’s claim-evidence extraction and matching
stages are model-agnostic and would function identically with RAG-
generated answers. This model operates without additional struc-
tural constraints, which aligns the outputs to familiar commercial
LLM chat experiences: mimicking the natural question-answering
flow users encounter when uploading PDFs to commercial models
and asking questions about their content. This separation between
answer generation and claim extraction also makes our system
model-agnostic; it is capable of analyzing outputs from any LLM
rather than requiring a specific architecture or training approach. In

standard RAG deployments, PaperTrail would function identically:
the claim-evidence extraction and matching stages operate on the
generated answer regardless of how that answer was produced. The
key difference from typical RAG interfaces is granularity—while
RAG systems often display retrieved passages as coarse-grained
attribution, PaperTrail decomposes both the answer and source
documents into discrete claims, which allows for verification of
specific assertions rather than entire passages.

Once the answer is generated, the secondary extraction LLM

performs the claim-evidence decomposition using the same defi-
nition of claims as the prompts used for paper-level extraction. In
addition to the prompt, which is modified to also request support-
ing evidence to be identified for each claim, the LLM receives the
complete answer text along with a JSON schema that enforces struc-
tured output (Google’s Gemini API allows for a schema specification
to be passed as an argument that dictates how the output should
be structured, which guarantees usable information extraction).
Since answers are much shorter than full paper texts, claim and evi-
dence extraction occurs in a single pass without a separate evidence
retrieval step. We use LLM-based extraction for this stage de-
spite its computational cost because the context is significantly
shorter than full papers, making the processing time acceptable for
real-time interaction. Additionally, we can extract both claims and
evidence in a single LLM call rather than requiring separate passes.

Following extraction, the system performs span annotation us-
ing the NLTK punkt tokenizer to segment the text into sentences.
Then, a programmatic matching function locates the precise char-
acter positions of each claim and evidence piece identified by the
extraction LLM, which maps the structured output back to specific
text spans in the original answer. This lightweight post-processing
step enables precise text highlighting required for the interactive
user interface, where users need to see exactly which portions of
the answer correspond to specific claims.

3.1.3 Stage 3: Claim-Evidence Matching. Our system matches the
claims and evidence across the corpus of source papers and an
individual LLM answer in QA using the structured claim-evidence
representations extracted from the previous two steps. The goal
of this stage is to improve the trustworthiness of the system by
creating both global explanations (overall claim coverage) and local
explanations (individual claim provenance) for the scholarly setting.

The matching process uses RAG-based extraction to identify
relevant claims and evidence from the paper. In this RAG pipeline,
the corpus consists of all paper-level claims and their supporting
evidence extracted offline from source documents. The query is
the user’s asked question. Similarity-based retrieval first filters
the complete paper claim corpus to identify candidates relevant to
the user’s question (using cosine similarity between the SPECTER
embeddings of the question and each paper claim). The LLM is
then prompted to select from the list of extracted claims the most
relevant ones to the query. The same RAG approach is applied
to evidence selection: for each relevant claim, its supporting evi-
dence forms a sub-corpus that is searched using the query, with
similarity-based retrieval filtering candidates and the LLM perform-
ing final selection of the most relevant evidence passages. We use
RAG-based extraction in this step because the LLM provides
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semantic capabilities to disambiguate between superficially similar
but conceptually different claims and evidence, while the initial
similarity-based retrieval dramatically reduces the search space
from hundreds of claims/evidence to a manageable set of candi-
dates.

Next, the LLM is prompted to perform claim-to-claim matching.
The model is tasked with comparing the list of answer claims to the
filtered list of relevant source papers’ claims, and to find the most
semantically equivalent pairs. This step benefits from the model’s
more nuanced language understanding to map the answerer LLM’s
generated assertions in scholarly QA to their ground-truth coun-
terparts in the source literature, and avoids spurious connections
that can occur when using simple cosine-similarity matching.

Finally, the evidence from the answer is verified using cosine
similarity. To help users calibrate their trust and reliance on the
system’s output, we set a permissive cosine similarity threshold of <
0.55 to flag potentially unsupported evidence. This threshold value
was selected through iterative testing on five held-out examples
to satisfy two requirements: first, to identify answers that diverge
substantially from the source material; and second, to avoid alert
fatigue and acknowledging that relevant evidence in an answer may
not be present in the filtered set of paper evidence. Our goal is to
help users form accurate mental models of the system’s capabilities
[6] to support appropriate reliance and mitigate both overtrust
and undertrust of the answerer LLM [67], and to manage user
expectations of imperfection [57].

3.1.4 Implementation Details. Our system uses Gemini 2.5 Pro
(gemini-2.5-pro-preview-05-06) for all LLM-based extraction and
matching operations with temperature set to 1.0. We enforced struc-
tured JSON output using Gemini’s response_json_schema param-
eter, which guarantees responses conform to our claim-evidence
schema. We used the sentence-transformer model SPECTER [21]
for all similarity-based operations, which we selected for its opti-
mization on scientific text. Average end-to-end response latency
was around 90 seconds per query, primarily due to sequential LLM
calls in Stages 2 and 3. Full prompts are provided in Appendix A.

3.2 Frontend Interface

Our user interface is a three-panel web application designed to
support scholarly question answering (QA) tasks (Figure 3). The
Left Panel (A) contains the user’s primary task workspace, the

Middle Panel (B) contains the LLM-based scholarly QA chat,

and the Right Panel (C) provides provenance information based
on claim-evidence matching. This section presents our four design
goals and then describes how these goals are instantiated in the
interface components.

3.2.1 Design Goals. Our interface for PaperTrail is based on four
design goals informed by challenges of source provenance in schol-
arly settings. Overall, these goals address tension between providing
comprehensive provenance information while maintaining usabil-
ity for domain experts, who are engaged in complex analytical tasks.

DG1: Support graduated cognitive engagement. Our goal is
to structure access to provenance such that users can get a collective
sense of the main provenance metric—number of claim-evidence

matches—and dive into details as needed. This pattern builds on
Shneiderman [113]’s visual information-seeking mantra: “overview
first, zoom and filter, then details-on-demand”. This graduated cog-
nitive engagement is helpful for scholarly tasks, which often involve
what Marchionini [83] calls “exploratory search”: the scholar moves
beyond fact retrieval to support deeper learning and investigation.
In their foundational work on a cognitive task analysis of literature
search, Pirolli and Card [96] outline several cognitive processes
under foraging and sensemaking loops that help people gradually
synthesize information. This design goal for our intended interface
reflects their model by connecting their “shoebox” stage (the col-
lected source papers) and “evidence file” stage (the extracted claims
and evidence) [50, 96]. Our interface allows users to operate at dif-
ferent levels of the sensemaking process, from a high-level answer
(overview) to claim-level annotations (zoom/filter) and finally to
the source text itself (details-on-demand).

DG2. Minimize interaction overhead while preserving ex-

ploration depth. Source provenance inherently adds more ele-
ments to an already interaction-heavy interface, e.g., by providing
more links to click and more information modalities to handle.
To keep provenance manageable, we follow design principles for
Coordinated Multiple Views (CMV) [103, 124]. Specifically, we ad-
here to Wang Baldonado et al. [124]’s guidelines by optimizing
for space and time resources with a multi-pane layout, ensuring
self-evidence by using brushing-and-linking to make relationships
between claims and sources clear, and supporting attention manage-
ment with selective information hiding. Following Pirolli and Card
[96]’s information foraging cost structures, our aim is to provide
comprehensive verification capabilities while reducing engagement
burden. In our interface, automatic claim highlighting, structured
claim-evidence decomposition, and focused interaction modes are
designed to reduce the costs of scanning, recognizing, and selecting
information, respectively.

DG3. Enable flexible verification workflows. Experts ap-
proach the same data using a variety of strategies [50], and oppor-
tunistically combine bottom-up and top-down processes based on
emerging insights and verification needs. For example, an expert
might “find a clue, and follow the trail” [50], a non-linear process
that requires flexibility to support. This also aligns with principles
of exploratory search, which emphasize iteration and discovery
over linear lookup [83]. Our interface avoids enforcing a single veri-
fication pathway. Users can navigate bidirectionally between claims
and evidence, which supports both top-down hypothesis check-
ing (starting from answer claims to find supporting evidence) and
bottom-up evidence discovery (exploring paper claims to identify
gaps in the answer).

DG4. Align with scholarly mental models and human-AI

interaction guidance. To be effective, an intelligent system must
align with its users’ existing knowledge structures and meet their
expectations for interaction. Experts develop mental models of their
domain that rely on structural and causal features rather than su-
perficial ones [110]. Our system reflects inherent argumentative
structures of scientific discourse [61, 65, 105, 122] by decompos-
ing information into claims and evidence, so that it can leverage
researchers’ existing mental models.
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Figure 3: The user interface comprises three main panels. The general layout, shown at the top, consists of the

Left Panel (A) , the Middle Panel (B) , and the Right Panel (C) . The Left Panel (A) contains the user’s main workspace,

including the Task Context (A1) , a References List (A2) , and the Text Editor (A3) . The Middle Panel (B) serves as

the Chat Interface (B1) , which includes a Question Bank (B2) and Chat Controls (B3) . The Right Panel (C) displays

information provenance, with its content changing based on the condition. The lower half shows the differences between

the conditions. In the PaperTrail interface (left), the Middle Panel (B) shows interactive Answer Claims (B4) . When a

user clicks a claim, the corresponding Paper Claim (C2) is highlighted in the Right Panel (C) , which also shows the overall

Claim Coverage (C1) for the LLM’s answer. In the baseline interface (right), the Middle Panel (B) contains a sentence-level

Source Highlight (B5) . Clicking this highlight surfaces the verbatim Paper Source (C3) text in the Right Panel (C) .
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3.2.2 Interface Layout and Features. The user interface is a single-
page web application built with React and Redux Toolkit for state
management. It presents a three-panel, resizable layout so users
can keep multiple sources of information in view without con-
text switching, a design decision aligned with DG1 and DG2 by
maintaining continuity of attention across related elements [103,
124]. The panels provide the task context ( Left Panel (A) ), the

chat interface ( Middle Panel (B) ), and the source provenance

( Right Panel (C) ). The panels are synchronized through a light-
weight event bus, which allows brushing, linking, and coordinated
navigation [103, 118]. Panel boundaries are resizable (horizontal
and vertical splits where present), supporting DG3’s flexible verifi-
cation workflows. Components use nested scrolling so panes and
in-panel sections can be scrolled independently, enabling DG1’s
graduated cognitive engagement. User selections auto-scroll linked
panels to the relevant context, implementing DG2’s principle of
minimizing interaction overhead through coordinated views. Perva-
sive tooltips define sections and describe functionality, supporting
DG1’s details-on-demand pattern.

The Left Panel (A) contains themain task environment, which

includes the Task Context (A1) and Text Editor (A3) . The

Task Context (A1) provides an overview of the task instructions
and an explanation of the resources available to the user, including a
References List (A2) of source documents relevant for the task.
This list of references is clickable and opens up a PDF viewer which
superimposes the clicked reference PDF over the entire window.
The left panel maintains proximity between the task description
and the user’s own writing space, the Text Editor (A3) , which
reduces the cognitive burden of switching between context and
text editing (DG1). The Text Editor (A3) contains a placeholder
response to the scholarly task at hand generated by an LLM. Users
can edit this text as they see fit, especially once they have used
the scholarly QA interface in the Middle Panel (B) . The com-
ponents within the panel are vertically resizable so that the user
can proportionally enlarge the task description or the editor when
needed, which supports flexibility (DG3): some users may rely heav-
ily on the task prompt while writing, while others may minimize
it entirely after an initial read.

The Middle Panel (B) comprises the Chat Interface (B1)

where users can ask questions about the source documents used
for the task (i.e., our scholarly QA setting), and use this infor-
mation to edit the text in the Text Editor (A3) . We provide a

Question Bank (B2) , a set of pre-written questions relevant for
the scholarly context that the user can simply click and select
to request a response (DG1,DG2).We also include Chat Controls (B3) ,
a Send/Stop control that becomes Stop while the system is waiting
for the LLM response. This affords user control in deciding when to
wait for an annotated LLM response with Answer Claims (B4)

or switch strategies or queries (DG3). Users can read a generated
response at a glance, or inspect more deeply using embedded an-
notations (DG1,DG3). Clicking on an answer claim engages the

Right Panel (C) . All other text in the answer except for support-
ing evidence is grayed out to help the user focus on the selected
claim (DG2).

The Right Panel (C) presents Paper Claims (C2) , which
are claims from the paper that are relevant to the question asked;
the supporting evidence for each claim is also provided (DG4). Pa-
per claims which match with claims made in the answer are under
“Claims included in answer” and are presented in teal cards. Paper
claims that do not have a match in the answer are under “Claims
omitted from answer” and are presented in red cards. Claims whose
match has been selected in the Middle Panel (B) are highlighted
using a vertical yellow bar (DG2,DG3). The right panel also con-
tains a global overview Claim Coverage (C1) , a horizontal bar
indicator that represents the number of relevant claims from the
source documents included in the LLM’s QA response (DG1). The
indicator is colored from red to teal, and these colors correspond
claim inclusion/exclusion colors of each claim-evidence provenance
card. Each provenance card is linked to a specific message from the
chatbot, creating a labeled, collapsible section for each turn so in-
formation from prior messages persists and can be revisited rather
than disappearing (DG2,DG3). Within each section, cards can be
expanded or removed to manage clutter. The interface applies se-
lective information hiding and coordinated-view synchronization
(brushing/linking with auto-scroll) [103, 113, 118, 124].

4 Offline Evaluation for Backend Approach

We conducted an offline evaluation to assess the quality of our
claim extraction approach. No gold-standard benchmark exists
for evaluating LLM-based claim extraction that generates a com-
plete set of atomic claims (rather than extracting verbatim text
spans) from scientific texts—existing datasets target either non-
exhaustive sentence-level claim classification [2, 80] or claim ver-
ification [5, 61, 122]. Therefore, we adapted two related datasets to
approximate an extraction evaluation.

4.1 Evaluation Datasets

4.1.1 SciClaimHunt. Kumar et al. [61] constructed a dataset of sci-
entific claims generated from research paper paragraphs using few-
shot prompting with Llama-2-13B, focusing on claims that could be
verified against textual evidence rather than exhaustive extraction.
Since the dataset provides paper-level but not paragraph-level claim
mappings, we matched each claim to its source paragraph by first
searching for exact string matches against sentences, then using
SPECTER embeddings [21] to find the most similar sentence for
remaining claims. We sampled 50 paragraphs with at least 3 associ-
ated claims, filtering for samples with sufficient annotation density
to enable meaningful comparison with our exhaustive extraction
approach. We used an additional 50-sample holdout set from Sci-
ClaimHunt while developing our procedure to avoid overfitting.

4.1.2 BioClaimDetect. Achakulvisut et al. [2] released a human-
annotated dataset of abstracts in the biomedical domainwith sentence-
level claim annotations. Annotators labeled entire sentences as
claims without decomposing them into atomic units. We randomly
sampled 50 abstracts from their test set, and used the full abstract
text as input and the annotated claim sentences as reference claims.
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4.2 Evaluation Procedure

For each sample, we applied our claim extraction prompt using
Gemini-2.5-Pro with 10-shot examples drawn from their respective
datasets. We embedded both reference and extracted claims using
SPECTER and computed pairwise cosine similarities. A reference
claim was considered “matched” if any extracted claim exceeded a
similarity threshold of 𝜏 = 0.9; likewise for extracted claims match-
ing references. This conservative threshold ensures matched claims
are semantically near-equivalent rather than only topically related.

We define recall as the proportion of reference claims matched
by at least one extracted claim, measuring coverage of benchmark
claims; precision as the proportion of extracted claims matched
by at least one reference claim, measuring extraction accuracy;
and F1 (the harmonic mean of precision and recall). Note that
neither dataset used for this evaluation provides exhaustive atomic
claim annotations—no such gold-standard dataset exists. Therefore,
we expect precision to be underestimated. That is, valid extracted
claims in our more atomic approach may not match any reference
claim simply because the reference set is an output of a less granular
approach. Recall represents a more realistic metric of comparison,
as we intend for our approach to provide coverage beyond the
existing methods of claim extraction.

4.3 Validation Results

On SciClaimHunt, our pipeline achieved precision of 0.69, recall of
0.62, and F1 of 0.62. On BioClaimDetect, we observed precision of
0.63, recall of 0.88, and F1 of 0.72.

Our pipeline achieved high recall on BioClaimDetect (0.88), suc-
cessfully recovering most human-annotated claims. The lower pre-
cision (0.63) reflects atomic decomposition: our pipeline extracts
multiple fine-grained claims from sentences that annotators labeled
as single claims. Manual inspection confirmed that most unmatched
extracted claims were valid claims absent from the reference annota-
tions rather than extraction errors. On SciClaimHunt, we observed
higher precision (0.69) but moderate recall (0.62). The lower recall
likely reflects noise in the SciClaimHunt reference set, which was
generated by Llama-2-13B rather than human annotators. We de-
veloped our extraction approach using SciClaimHunt examples,
so we included BioClaimDetect to test robustness on an out-of-
distribution dataset that uses human annotations. The stronger
performance on BioClaimDetect suggests our pipeline generalizes
beyond its development dataset and aligns well with human judg-
ment of what constitutes a claim.

5 User Study Design

We evaluated the efficacy of our argument-based source provenance
system by comparing its use to a baseline interface that represented
current LLM design for QA. This was done via a within-subjects
user study with people in research-oriented roles in an organization
(N=26). Participants experienced both interfaces across two tasks:
a multi-paper synthesis (Task 1) and devil’s advocate paper review
(Task 2). The tasks were presented in a fixed order to control for
task complexity progression, cognitive fatigue, and learning effects;
interface condition order was randomized and counterbalanced
across participants. Our study was classified as exempt from review

by our ethics review board, and we pre-registered our hypotheses
and methods on AsPredicted.2

5.1 Baseline Interface

The baseline interface differs from PaperTrail primarily in how
provenance information is presented in the Right Panel (C) .
While PaperTrail decomposes answers into discrete claims with
matched evidence from source papers, the baseline interface uses
a source citation approach that mirrors how commercial LLMs
currently indicate provenance. In the baseline, when users click
on Source Highlights (B5) in the LLM’s answer, the correspond-

ing verbatim Paper Source (C3) text appears in the Right Panel (C) .
Given the prominent use of LLMs for scholarly QA now, with source
links being the main form of explanatory information, our com-
parison to this baseline helps us measure if scholarly LLM use can
be made more deliberate and tempered by introducing provenance
details.

5.2 Task Design

5.2.1 Scholarly Writing Tasks. We designed two tasks that reflect
common scholarly activities researchers encounter when engag-
ing with literature. Each task requires participants to edit LLM-
generated text, while using our scholarly QA system for verification
and improvement. The initial texts were generated using Google’s
Gemini model to ensure realistic outputs with strengths and limita-
tions characteristic of commercial LLMs. Moreover, this samemodel
is used for LLM-based QA, maintaining consistency in content.

Task 1: Multi-Paper Synthesis. This task represents the pro-
cess of comparing sources for the purpose of literature review.
Participants are asked to edit an approximately 300 word LLM-
generated draft statement that attempts to synthesize methods and
findings from all four papers. The LLM-generated synthesis natu-
rally exhibits common LLM characteristics, including potentially
incomplete integration across papers, varying levels of technical
detail, and possible gaps in comparative analysis.

Task 2: Devil’s Advocate. This task simulates a pre-submission
manuscript review, where researchers must anticipate and address
potential reviewer critiques. Participants are asked to edit an LLM-
generated draft defense of a paper positioned as their own manu-
script, with the other three papers representing prior work. The
300-word LLM-generated statement defending the paper’s novelty
and soundness was a placeholder for the argument that this task
required participants to verify and edit.

These tasks are informed by prior work categorizing how LLMs are
used in scholarly settings. A recent survey study found that 81% of
816 researchers across multiple domains already incorporate LLMs
in their research workflows, with literature review being among the
most frequent use cases, aligning with our multi-paper synthesis
task [74]. The second task (devil’s advocate) reflects practices where
researchers use LLMs to get critical feedback on their work and
examine logical consistency in their manuscripts [51, p. 9].

5.2.2 Source Document Corpus. Next, we describe our document
selection process for the scholarly QA tasks outlined above. We

2https://aspredicted.org/wp22-d58z.pdf

https://aspredicted.org/wp22-d58z.pdf
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chose four peer-reviewed papers on the topic of Mars exploration
and planetary surface operations to serve as our corpus of source
papers that the participants must ask questions about. These pa-
pers were chosen according to several criteria. The topic needed
to be broad enough to be accessible across many of the research
disciplines at the organization we recruited from, as well as inter-
disciplinary, to introduce unfamiliar material across participants.
Our selected research topic involves multiple domains in engineer-
ing, science, and human factors; it is also a topic of contemporary
interest [10, 63, 112], which we hoped would make the task more
compelling to participants. The topics and themes needed to be co-
herent across papers to enable synthesis tasks, while methodologies
needed to be diverse to support critical comparison across papers.

We achieved this by first selecting two anchor papers based on
publication in peer-reviewed venues recognized within the research
area. These were recommended by two domain experts at our or-
ganization who confirmed the papers represent methodologically
sound contributions. These papers had no authorship or acknowl-
edged affiliation with our organization, to minimize the likelihood
that participants had prior familiarity with them. From these anchor
papers, we selected two additional papers from their reference lists
that addressed the same topic but used different methodological
approaches to ensure diversity in contribution types. Our final list
was curated in collaboration with experts in that research area.
The resulting corpus consists of of four papers that look at Mars
exploration architectures from different perspectives and scales.
“An Optimization Framework for Global Planetary Surface Explo-
ration Campaigns” [3] presents an optimization framework that
addresses the problem of selecting landing sites, routing decisions,
and maximizing scientific return under resource constraints. “Re-
silient Architecture Pathways to Establish and Operate a Pioneering
Base on Mars” [97] describes an architecture for establishing a Mars
base supporting 50 people, including mission timelines, system re-
quirements, and cost estimates. “Pale Red Dot: a Large, Robust
Architecture for Human Settlements on Mars” [78] proposes a Mars
settlement architecture for 36 crew members distributed across two
villages. And “Leveraging Economies of Scale and Gains from Spe-
cialization for Robust Crewed Mars Architectures” [77] analyzes
Mars missions with crew sizes from 4 to 63 members using a mod-
eling approach that includes economies of scale and specialization
effects. The papers were between 11 and 16 pages excluding refer-
ences and appendices, and contained artifacts typical of scholarly
papers and technical reports such as mathematical expressions,
figures, and tables of quantitative information.

5.2.3 Question Bank. To reduce task burden and add some stan-
dardized interaction potential, we developed a question bank of pre-
written questions for each task. We pre-generated answers to these
questions, enabling system responses with no lag for provenance
annotations. Participants could also write their own questions.

We grounded the development of these questions in the QASA
framework [68], which categorizes questions that scholars write
about papers into three types: surface questions, which “aim to
verify and understand basic concepts in the content;” testing ques-
tions, which focus on “meaning-making and forming alignment
with readers’ prior knowledge;” and deep questions, which “ask
about the connections among the concepts in the content and elicit

advanced reasoning.” Each type of questions is further categorized
in subtypes with examples provided in the QASA paper.

We used Gemini to generate the question bank in the form of
1-2 questions for each relevant subtype. The prompt for Gemini
included: (1) the QASA question type definitions, subtypes, and ex-
amples; (2) our task descriptions; and (3) the pre-generated texts that
participants would edit. For Task 1 (Multi-Paper Synthesis), we used
questions from the testing category: examples, quantitative com-
parisons, definitions, and compare/contrast questions. These ques-
tion types support cross-paper synthesis by prompting participants
to align information and make connections across sources. For Task
2 (Devil’s Advocate), we used questions from the deep category:
causal relationships, goals and motivations, procedural details, ra-
tionales, and expectations. These question types mirror how critical
reviewers interrogate a manuscript’s argumentation and methodol-
ogy. We did not pre-write surface questions because they trigger
basic fact-lookup that participants can easily perform on their own,
and are misaligned with our aim to elicit the meaning-making and
higher-order reasoning required by synthesis and critique.

5.3 Procedure and Flow

Participants completed a pre-study survey to indicate interest, share
demographic information, and rate their familiarity with the source
document corpus (too much familiarity was used as an exclusion cri-
teria; Section 5.4). Sessions were then conducted remotely and asyn-
chronously via a web browser, and included the following steps:

• Participants land on an About page that summarizes the
study, provides them with contact information for the re-
search team, and lists the study steps and their approximate
durations. This page informs them that they may choose not
to participate at any time and gathers consent.

• Next, participants complete the Trust in Explainable AI (TXAI)
survey instrument [41]. Following Perrig et al. [93]’s recom-
mendation, we exclude the reverse-coded question (item 6:
“I am wary of the AI”), as doing so improves internal consis-
tency. They are asked to think of an LLM-based system that
they have used recently for scholarly tasks and to answer
the questions specifically with that system in mind.

• After completion of the initial trust survey, participants view
a tutorial that illustrates the interface they will use for Task 1.

• After viewing the tutorial, the participant is brought to the
interface they will use for Task 1. This page includes the task
environment, the chatbot, and the intervention specific to
the current condition. The participant uses the interface and
edits the drafted text until they are satisfied with the result.
Our guidance was to aim for 20 mins to complete the task.

• After submission of the edited text, the participant takes four
post-task surveys: (1) the TXAI scale [41], only being asked
in the context of the LLM used, not the entire interface (with
instructions and edits to TXAI scale items to clarify this); (2)
a two-item confidence assessment, where they indicate on
a scale of 1 to 7 their confidence in the edits they made (“I
am confident in the edits I made to the text”) and in the final
text (“I am confident in the quality of the final text”); (3) the
NASA-TLX scale to measure workload [39]; and (4) the SUPR-
Q scale to evaluate the usability of the application [108].
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• After completion of the post-task surveys, the participant
is taken to a tutorial for the interface used for Task 2. They
then perform the second task and complete the post-task
surveys again with Task 2 details in mind.

• After completion of the second post-task surveys, the partici-
pants land on a final set of questions that ask them to indicate
which system they preferred, and provide an optional free-
response box for feedback on the systems. This is followed
by a debrief page that explains the study in more detail.

5.4 Participants

We recruited people in research-oriented roles (both scientists
and research engineers) across National Aeronautics and Space
Administration centers—they were asked to express interest in
participating in our study by completing a pre-screen survey. Par-
ticipation in this study was voluntary, i.e., there was no monetary
incentive provided for completing the study. 78 people completed
our pre-screen, of which 74 met our inclusion criteria. We excluded
participants who rated their familiarity with any of the papers in
the corpus as greater than 3 out of 7, as these people would have
an unfair advantage given their prior knowledge of the work. Of
these 74 people who met our inclusion criteria, 38 ultimately par-
ticipated in our study. The remaining 36 did not complete the study
due to scheduling conflicts, time constraints, or lack of response to
follow-up communications.

We report results from 26 participants after excluding data from
12 who did complete the study but their data was not valid. These 12
participants were excluded for the following reasons: (1) they took
less than 10 mins to complete each task, without any interaction
with the components of our systems; (2) they added gibberish text
in their responses; and (3) their qualitative responses indicated
that system latency had prevented them from engaging with the
information (caused by load balancing issues in the backend). This
exclusion process was conducted based only on feedback and task
duration, without referencing our primary outcome measures, to
avoid biasing the results.

The sample included 20 men and 6 women. Most participants
(24 of 26) were between the ages of 25 and 54. The majority were
highly experienced, with 18 participants having between 6 and 20
years of professional experience, and all but two held an advanced
degree (14 Master’s, 11 Doctoral). Regarding their familiarity with
LLMs, 21 participants reported using LLM-based tools either daily or
weekly. All participants had expertise in research and engineering
in the sciences, including domains like chemistry, physics, materials
science, and aerospace.

5.5 Measures

We use three primary measures to understand the outcomes of
using PaperTrail compared to the baseline interface for scholarly
tasks, as well as additional exploratory measures to understand
participants’ experiences with our system.

5.5.1 Primary Measures. Our system is intended to help people
appropriately use LLMs for scholarly tasks. We measure aspects of
this usage via three primary metrics: people’s trust in LLMs after us-
ing the interfaces, their reliance on the placeholder LLM-generated

text for the scholarly tasks, and their confidence in the LLM and
their output.

Trust. We measure subjective trust using the validated TXAI
scale [41] at three points: baseline (pre-study) and after each task.
Items are rated on a 1-7 Likert scale and averaged. We use the pre-
study trust value descriptively for contextualizing initial behaviors;
only the trust values for individual conditions are used for compar-
isons. The scale items are asked in the context of the LLM used for
the Q&A, rather than the other design features of the interfaces.

Reliance.We operationalize reliance based on changes to the
LLM-generated placeholder text provided for the scholarly task.
We calculate a token-level edit similarity based on Levenshtein
distance [69] between the original LLM-generated draft (𝑥 ) and the
participant’s final edited text (𝑦), normalized by the token count of
the longer token sequence:

Reliance = 1 −
LD

(
𝑊 (𝑥), 𝑊 (𝑦)

)
max{|𝑊 (𝑥) |, |𝑊 (𝑦) |} (1)

where LD is Levenshtein distance over tokens and𝑊 (·) maps a
string to a sequence of lowercased lemmas after removing stan-
dard English stop words while retaining negations (no, not, nor,
n’t) to preserve polarity.3 Normalizing by max{|𝑊 (𝑥) |, |𝑊 (𝑦) |}
ensures large expansions or pruning register as reduced reliance.
Values for reliance range from [0, 1], with 1 indicating no edits
(full reliance) and lower values reflecting greater rewriting. We
chose token-level Levenshtein distance as our reliance measure
because our research question concerns behavioral engagement
with the text—specifically, whether participants physically edited
the LLM output—rather than the semantic quality of those edits.
Levenshtein distance directly captures editing actions: additions,
deletions, and substitutions that participants made to the draft at
the word-level, excluding minor edits (e.g., to stop words). Our
measure treats all edit operations equally regardless of their seman-
tic impact, which aligns with our goal of understanding whether
provenance information changes low-level editing behavior.

Confidence. We measure participants’ subjective confidence in
each task output on two 7-point items (“I am confident in the edits
I made to the text” and “I am confident in the quality of the final
text.” We average the two items to form a per-condition confidence
score given internal consistency in the measures, calculated as
Cronbach’s 𝛼 = 0.89, 95% CI = [0.81,0.93].

5.5.2 Secondary Measures. We collect additional subjective and be-
havioral measures to contextualize primary outcomes.Workload is
assessed post-task for each interface using the NASA-TLX question-
naire [39]; we compute the raw (unweighted) overall score as the
mean of the five subscales (omitting the second item, “Physical De-
mand”). Perceived usability is assessed post-task with the SUPR-Q
questionnaire [108] and averaged. Interaction logs include time-
on-task; number of chat questions; and clicks on provenance fea-
tures (e.g., source cards, claim/evidence items, focus toggles). We
also record interface preference and open-ended feedback at
the end of the study.

3Lemmatization collapses inflectional variants (e.g., optimize/optimized/optimization),
and stop-word removal focuses the metric on content-bearing terms; operating at the
word level aligns the unit of comparison with typical revision actions and reduces
sensitivity to punctuation and formatting noise.
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Measure Baseline Mean PaperTrail Mean Statistic Effect Size

Primary Factors

Trust 4.22 ±1.22 3.68 ±1.24 𝑡 = 2.61, 𝑝 = .015∗ 0.44
Reliance 0.73 ±0.21 0.75 ±0.29 𝑊 = 146.00, 𝑝 = .313 -0.23

Confidence 4.27 ±1.51 4.05 ±1.58 𝑡 = 0.64, 𝑝 = .525 0.14

Experiental Factors

Cognitive Load 4.10 ±0.83 4.12 ±0.78 𝑡 = −0.21, 𝑝 = 0.838 0.03
Usability 5.05 ±1.08 4.48 ±1.17 𝑊 = 71.50, 𝑝 = .026∗ 0.52

Clicks 8.26 ±6.02 12.47 ±14.96 𝑊 = 97.50, 𝑝 = .137· -0.35
Messages 3.67 ±2.57 4.08 ±2.84 𝑡 = −0.79, 𝑝 = .438 0.16

𝑡 = Paired t-test,𝑊 = Wilcoxon signed-rank test, ∗∗∗𝑝 < .001, ∗∗𝑝 < .01, ∗𝑝 < .05, ·𝑝 = .1
Table 1: Comparison of measures between baseline and PaperTrail conditions.

5.6 Analyses

We analyze our primary dependent variables using paired compari-
son tests between the baseline and PaperTrail data: t-tests when
the distribution is normal, Wilcoxon signed-rank tests otherwise.
Normality of the data is tested using the Shapiro-Wilk test. All
statistical tests are two-tailed, with an alpha level 0.05. We also
report comparison testing outputs for our exploratory experiential
variables: cognitive load, usability, clicks, and messages; these are
intended for descriptive purposes and to understand the differences
in our primary measures. We also report the final interface pref-
erence as a frequency count. The qualitative data is coded using
Braun and Clarke [17]’s inductive approach, with the intention to
understand specific outcomes for what people liked, disliked, and
wanted to add to our system design. We conduct Spearman corre-
lation analyses between demographic, experiential, and primary
outcome variables to understand relationships between measures
and how they differ across interface conditions.

6 Results

This section presents the results of our within-subjects study. We
first report results from comparisons between PaperTrail and base-
line on our primary outcome and secondary experiential measures,
then correlation analysis and qualitative themes to contextualize
these numbers. Table 1 presents an overview of the descriptive and
comparison outputs for all our measures.

6.1 Primary Measures: Trust, Reliance, and

Confidence

A paired t-test showed a statistically significant effect of the in-
terface on subjective trust on the LLM. Participants reported sig-
nificantly lower trust in LLMs when using PaperTrail compared
to the baseline (𝑡 (25) = 2.61, 𝑝 = 0.015)), with a medium effect
size (Cohen’s 𝑑 = 0.44). This supports our hypothesis that claim-
evidence annotations encourage more caution towards LLM use in
scholarly settings. However, despite the reduction in trust, we found
no significant difference in behavioral reliance between the two
conditions (𝑊 = 146, 𝑝 = 0.313); nor in self-reported confidence
(𝑡 (25) = 0.64, 𝑝 = .525).

We propose three potential explanations for the discrepancy be-
tween the drop in trust and the non-significant change in reliance
behavior for further consideration. First, the cognitive effort re-
quired to learn and navigate the novel PaperTrail interface within
the limited time may have diverted participants’ attention from the
primary writing task, reducing the likelihood of extensive edits. Sec-
ond, while PaperTrail’s granular details made participants more
skeptical of the LLM itself, the system’s transparent design may
have been perceived as more trustworthy overall, shaping reliance
in a way that counteracted their caution towards the LLM. Finally,
the interface may have had a bimodal effect, where it increased trust
for some users who valued the verification featureswhile decreasing
it for others who were confronted with the LLM errors. However,
coupled with the limited editing behavior of several participants
given time constraints, this bimodal effect is lost in regression to the
mean. We unpack these further in our qualitative findings below.

6.2 Secondary Experiential Measures

Our results show that the increased critical scrutiny afforded by Pa-
perTrail came at the cost of lower perceived usability. A Wilcoxon
signed-rank test indicated that the PaperTrail interface was rated
as significantly less usable than the baseline (𝑊 = 71.5, 𝑝 = 0.026),
with a medium effect size (𝑟 = 0.52). We consider two possible
explanations for these values. First, scholarly synthesis is an inher-
ently demanding task, and this intrinsic difficulty may have been
exacerbated by the feature-richness of PaperTrail. Indeed, prior
work has often found this to be the case with rich explanatory out-
puts [11, 53, 100]. Second, our lab study did not afford participants
enough time to move past the initial learning curve associated with
the novel interface. In a real-world field deployment where users
could develop expertise in the system over time, perceptions of
usability might be different.

Click counts showed a marginally significant difference between
conditions (𝑊 = 97.50, 𝑝 = 0.137), with participants clicking
more in PaperTrail (𝑀 = 12.47, 𝑆𝐷 = 14.96) than in the baseline
(𝑀 = 8.26, 𝑆𝐷 = 6.02). However, higher click counts are ambiguous
as an engagement indicator. More clicks could reflect deeper explo-
ration of provenance information (the intended use), but could also
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indicate: interface inefficiency requiring more actions to accom-
plish equivalent goals; confusion leading to exploratory clicking;
or repeated attempts to understand unfamiliar features. The large
standard deviation in PaperTrail clicks suggests highly variable en-
gagement patterns across participants. Without click sequence anal-
ysis or qualitative observation of navigation patterns, we cannot say
whether the additional clicks represent productive verification be-
havior or interaction overhead. We therefore interpret this finding
cautiously. We return to this tradeoff between complex information
presentation and usability in the qualitative results and Discus-
sion. Other experiential measures—cognitive load and number of
messages sent to the LLM—were similar across the two interfaces.

6.3 Correlation Analysis

To better understand some of our findings above, we used Spear-
man’s coefficient to explore relationships between demographic,
experiential, and primary outcome variables for the baseline (Table
2) and PaperTrail (Table 3).

One difference between the interfaces is the relationship between
reliance and trust. In the baseline condition, reliance was signifi-
cantly and positively correlated with trust (𝑟 = 0.57, 𝑝 < 0.01) and
usability (𝑟 = 0.60, 𝑝 < 0.05). This suggests that the participants
who trusted the LLM more and found the system more usable also
tended to rely on the LLM output more heavily (i.e., edited the text
less). In contrast, these correlations disappear in the PaperTrail
condition. While the strong relationships between trust, confidence,
and usability remained, none of these factors were significantly cor-
related with how much a participant chose to edit the LLM output.
This suggests that the claim-evidence features in PaperTrail may
have decoupled the simple relationship between a user’s general
trust in LLMs and their reliance on LLM-generated text. We sus-
pect this is due to the same bimodal shift in behavior change as a
consequence of reduced trust that is described in Section 6.1.

Additionally, we observed a significant negative correlation be-
tween education and confidence with PaperTrail (𝑟 = −0.41, 𝑝 <

.05) that was absent in the baseline. This suggests that more highly
educated participants may have been more sensitive to the prove-
nance information shown by PaperTrail, leading to reduced con-
fidence in their outputs. We did not find any other significant cor-
relations between participant demographics and our measures.

6.4 Qualitative Findings

Our qualitative analysis of participants’ study feedback revealed
three primary themes that help explain the quantitative results: ex-
ternal constraints that shaped reliance behaviors; tensions between
information richness and usability; and paradoxical trust behaviors
despite recognition of verification needs.

6.4.1 Factors Affecting Reliance Behaviors. Time Pressure and

System Performance. The most frequently cited barrier to mean-
ingful engagement was time constraints, mentioned explicitly by
over half of the participants. Guiding participants to complete the
tasks in around twenty minutes meant they had insufficient time
to deeply engage with the provenance features or verify claims
against source documents. This constraint was exacerbated by sys-
tem latency, with participants describing response times as “ex-
cruciatingly slow,” (P1) and “much slower than others [LLMs] that

I have used” (P3). This led to many participants having a similar
experience to participant 23, who “didn’t make any edits to the text,”
and “[instead] asked a few questions to query and verify the accu-
racy of the responses.” The combination of limited time and slow
responses impacted how participants engaged with the provenance
features, and participants noted this explicitly as well, like P15: “I
feel the time constraints fundamentally changed the way I used
and trust the AI output. I depended on the AI more because of the
short time constraint and ultimately spent less time revising and
checking the results than I otherwise would have.”

Task Authenticity and Engagement Strategies. Participants
approached the tasks with divergent strategies based on their fram-
ing of the study context. Some experts wanted to at least skim the
papers on their own first before doing the task, and consequently
expressed frustration with the artificial nature of evaluating less fa-
miliar papers, though in their research domain: “To producemore in-
formative results, it would’ve been necessary for the participants to
either familiarize themselves with the four papers before the test or
to supply their own four papers with which they are thoroughly fa-
miliar” (P5). Conversely, some participants explicitly acknowledged
the artificial nature of the study context and calibrated their engage-
ment accordingly. As P2 explained, “I did not have to actually read
any of the papers. I guess that means I trusted the AI tool to be accu-
rate. I didn’t believe everything it was telling me was accurate, but I
figured it was close enough to complete the task at hand.” This diver-
gence in engagement strategies between those seeking ecological
validity and those accepting the study’s limitations likely influenced
the variation in reliance scores, as participants’ editing behaviors
reflected their differing interpretations of what the task demanded.

6.4.2 The Information Complexity–Usability Tradeoff. Participants
consistently recognized the need for access to complex information
for scholarly tasks while struggling with its presentation. The qual-
ity of LLM outputs was frequently criticized, with one participant
comparing it to “an eighth grader” (P25) and another to “what I
would expect from a novice researcher placed in the same bind”
(P4). Given their dissatisfaction with the LLM output quality, many
participants expressed a desire for deeper engagement with the
source materials, suggesting they would have preferred to read all
papers thoroughly before attempting the tasks. Yet this desire for
comprehensive review reflects an underlying tension in scholarly
AI tool evaluation. While thorough paper familiarity might improve
task performance in a study setting, such exhaustive pre-reading
is specifically what these tools aim to help researchers avoid in
practice, where the volume of literature makes reading every pa-
per impractical. Overall, this dissatisfaction drove appreciation for
the detailed provenance features, but the implementation created
significant usability challenges.

Interface Complexity and Physical Constraints. Given their
desire for richer, nuanced outputs, participants appreciated the
theoretical value of the argument-based provenance information. In
fact, we received some invitations to share our system and findings
more broadly in the organization, noted by participants in their
feedback responses to the study. However, the implementation
revealed gaps between our design goals and user experience.
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Ed. Exp. Freq. Gender Conf. Rel. Trust Cog. Load Usability Clicks Messages

Demographics

Age 0.47* 0.79*** 0.19 -0.04 -0.03 0.12 -0.08 -0.29 -0.08 -0.09 -0.02
Education 0.53** 0.10 -0.16 0.07 0.18 0.02 -0.11 -0.05 -0.07 0.16
Experience 0.10 -0.20 -0.01 0.02 -0.01 -0.21 -0.10 0.04 0.14
Frequency 0.06 0.05 0.13 0.00 0.27 0.06 -0.06 0.27

Gender -0.07 0.34 -0.10 0.16 0.03 0.13 0.05
Primary

Confidence 0.24 0.60** -0.08 0.47* -0.13 0.07
Reliance 0.57** 0.21 0.50* 0.02 0.11

Trust 0.31 0.74*** 0.11 0.30
Experiential

Cognitive Load 0.29 0.26 0.47*
Usability -0.10 0.22

Clicks 0.16
∗∗∗𝑝 < .001, ∗∗𝑝 < .01, ∗𝑝 < .05

Table 2: Spearman correlations in the baseline condition. Education refers to level of educational attainment, Experience refers

to years of experience, Frequency refers to frequency of AI use, and Clicks and Messages refer to the total counts of each.

Ed. Exp. Freq. Gender Conf. Rel. Trust Cog. Load Usability Clicks Messages

Demographics

Age 0.47* 0.79*** 0.19 -0.04 -0.20 0.00 0.03 -0.18 0.23 -0.38 -0.28
Education 0.53** 0.10 -0.16 -0.41* 0.25 0.01 -0.15 -0.08 0.04 -0.24
Experience 0.10 -0.20 -0.29 0.22 -0.01 -0.12 0.07 -0.20 -0.23
Frequency 0.06 -0.19 0.11 -0.12 0.17 -0.09 -0.11 0.08

Gender 0.03 0.14 -0.29 0.13 0.05 -0.28 -0.11
Primary

Confidence -0.06 0.61*** -0.28 0.62*** 0.08 -0.13
Reliance 0.06 -0.11 0.16 -0.11 -0.32

Trust -0.27 0.73*** -0.03 -0.11
Experiential

Cognitive Load -0.28 0.22 0.04
Usability -0.22 -0.32

Clicks 0.32
∗∗∗𝑝 < .001, ∗∗𝑝 < .01, ∗𝑝 < .05

Table 3: Spearman correlations in the PaperTrail condition. Education refers to level of educational attainment, Experience

refers to years of experience, Frequency refers to frequency of AI use, and Clicks and Messages refer to the total counts of each.

Our design goal DG2 aimed to “minimize interaction overhead
while preserving exploration depth,” yet participants found the in-
terface to be “cluttered...for a fairly small laptop screen” (P25), with
nested windows that allowed reading “only a line or two at a time.”
This directly contradicted our intention to optimize space/time re-
sources. Similarly, while DG3 sought to “enable flexible verification
workflows,” the rigid presentation of claim-evidence cards actually
constrained participants’ verification strategies. The tension be-
tween appreciation and frustration can be seen in P24’s feedback,
who found the interface was “interesting and [having] value,” but

that it needed to “communicate this value more easily.” The question
bank partially addressed DG1’s goal of “graduated cognitive engage-
ment” by providing an entry point for exploration. As P18 noted:
“I could not have done this without the suggested questions.” How-
ever, this single success could not overcome the broader failure to
achieve balance between complexity and usability. We consider this
usability feedback in our Discussion of future design implications.

6.4.3 The Ethos of Grounding LLM Outputs in Provenance Informa-
tion. Despite usability frustrations, most participants understood
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and valued the project’s underlying goals. While there were ex-
ceptions (“this interface/model completely misses how I use an
LLM for research or paper writing purposes” (P21)), the majority
recognized the critical need for verification capabilities in scholarly
LLM tools. Participants articulated various aspects of this need: the
importance of “fact checking” (P1); “trying to figure out what was
missing or possibly incorrect” (P2); and evaluating “how credible
or trustworthy the application’s responses were” (P18). P6 framed
it as an ethical concern, warning against “the temptation to use
AI to write material for you,” which they equated with “a general
dumbing down of the world.”

While usability issues limited positive experiences—only a small
subset, like P3, “found the tasks easy to complete with the LLM
QA interface provided”—participants nonetheless appreciated the
conceptual value of argument-based provenance. P14’s feedback
articulated precisely what PaperTrail aimed to achieve:

If more tools could be given to find the location of spe-
cific claims within the papers, that would be helpful. I
find that errors often occur in LLMs through stripping
context. To help with overall accuracy, every effort
should be made to help the human user track down
the original context to verify claims.

This recognition that LLM errors stem from “stripping context” and
that verification requires tracing claims to their original sources
supports the premise of claim-evidence provenance that we priori-
tized in PaperTrail.

7 Discussion

Our evaluation of PaperTrail shows that while argument-based
provenance can encourage healthy skepticism toward LLM outputs,
translating this into changed reliance behavior requires overcom-
ing substantial barriers related to time, usability, and ingrained
patterns of tool use. The relationship between attitudes and ac-
tions in human-AI collaboration is complex, particularly in time-
constrained, cognitively demanding contexts like scholarly tasks.
Significant usability costs of our implementation likely contributed
to this trust-behavior gap. Below, we first contextualize our findings
within prior work on trust and reliance for AI-assisted decision-
making. Grounded in that argument, we present theoretical and
design implications towards high-utility paths forward for our new
scholarly AI assistance setting; and end with computational oppor-
tunities for improvement.

7.1 Trust-Behavior Gap: Why Didn’t Lower

Trust Change Reliance?

While our methodological and implementation constraints likely
played a role in the trust-behavior change gap (details in Limitations
below), our methods and findings share similarities with prior work
on explainable AI (XAI) and AI-assisted decision making. These
prior work contexts similarly show that explanations can increase
reliance on both correct and incorrect predictions [55, 62]; enforced
engagement with them can reduce user satisfaction [18, 24]; and
their presentation does not often cultivate behavior change as peo-
ple continue to defer to system outputs under time pressure or
cognitive load [1, 53, 100]. We hypothesize three reasons for the
consistent results across these contexts and ours.

First, people default to System 1 thinking—fast, automatic, and
heuristic-based reasoning—even when they intellectually recognize
the need for deliberation. The Dual Process theory of cognition dis-
tinguishes between System 1’s efficient but error-prone processing
and System 2’s effortful analytical reasoning [32, 49]; also termed
“bounded rationality” [115]. As XAI work has shown, making AI
systems more explainable can sometimes exacerbate this problem
by providing convenient narratives and analogic thinking devices
that feel like comprehension without requiring genuine verifica-
tion [22, 53]. Similarly, our claim-evidence interface attempted to
engage System 2 thinking by requiring users to evaluate logical
connections between claims and sources, but the cognitive cost of
verification remained too high relative to the perceived benefits
within the constrained study context.

Second, the intrinsic incentives that drive people away from
System 1 thinking are missing in AI-assisted settings. Klein [56]’s
reconciliation of naturalistic decision-making vs. heuristics-based
outcomes identifies two necessary conditions for genuine intuitive
expertise: high-validity environments (with stable regularities to
learn) and opportunities to learn these regularities through feed-
back. AI-assisted settings may violate both conditions. In our case,
LLMs produce errors unpredictably—plausible-sounding synthesis
that may contain subtle omissions, over-generalizations, or un-
supported leaps—making it difficult to develop stable heuristics
for spotting problems. Moreover, people receive limited feedback
on whether their edits successfully improved accuracy. Without
this feedback loop, people cannot not learn when their skepticism
should translate into action versus when selective reliance was
appropriate, giving them no motivation to engage deliberately.

Third, designing systems that successfully shift cognitive be-
havior is a hard problem. PaperTrail represents one approach—
introducing what has been called “design friction” [53, 88], “seamful
design” [30, 52] or a “cognitive forcing function” [18] in XAI work
to scholarly contexts, by requiring that people engage with claim-
evidence structures before accepting LLM outputs. However, as
both prior work and our findings demonstrate, such interventions
face a difficult balancing act. If the friction is too burdensome, it
hurts usability and people circumvent or abandon the system en-
tirely [35, 53, 107]; our study feedback suggests we erred in this
direction. If the intervention is too lightweight, it fails to engage
System 2 thinking and people maintain their original behaviors.
Prior work has even framed this as a cost-benefit analysis, seek-
ing to understand when to prioritize different types of thinking: a
challenge that persists [100].

If we anticipate some continued consistency in these two types
of AI-assisted settings (prior work on XAI and AI-assisted decision
making and our scholarly context), we can ground our implications
in what would be different from the ideas explored before. While
there remains tremendous potential for translating successes across
these two contexts, we consider how to make progress on what is
uniquely challenging for scholarly QA and writing via theoretical,
design, and computational implications below.
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7.2 Theoretical Implication: From Trust to

Trustworthiness

What does it mean to study appropriate trust and reliance on LLMs?
Is the goal to always lower trust? As we note above, this would
not be ideal from a cognitive standpoint, and people might become
so skeptical that they under-utilize a system. Appropriate trust is
particularly challenging in a setting when the model is inherently
black-box with no faithful representation of interpretability. We
consider an alternate framing: making an LLM trustworthy rather
than changing user trust.

7.2.1 Argument-Grounded Provenance as a Metric of LLM Trustwor-
thiness. The backend architecture of PaperTrail can be extended
beyond a user-facing tool into a formal trustworthiness benchmark
for scholarly QA systems. Our method of using both local (claim-
level matching) and global (claim coverage) information structures
is a detailed way to evaluate LLM outputs that goes beyond surface-
level metrics. This approach complements expert-derived error
schemas [84] that categorize LLM failures in scholarly QA across di-
mensions including correctness, completeness, hallucinations, inter-
pretation, and synthesis quality. Comparing answer claims against
relevant source claims enables quantitative measure of both faith-
fulness and completeness. This approach is particularly effective for
highlighting critical omissions, which is a difficult-to-detect failure
mode in current systems. Such a benchmarking framework could en-
able systematic comparison of commercial LLMs to identify which
are best suited for scholarly QA, support development of specialized
scholarly LLMs through granular feedback, and allow researchers to
audit LLMs before deployment.We present this argument-grounded
provenance matching approach as an “application-grounded eval-
uation” [13, 28] for establishing LLM trustworthiness in scholarly
settings, complementing existing methods while addressing the
specific needs of scholarly users.

7.3 Implications for Design

Based on design lessons from prior work and our study, we consider
the following implications to address how future systems might
better balance the competing demands of information completeness
and interaction fluidity.

7.3.1 Managing the Cost of Information Granularity with Adaptive
Provenance. Our results show that detailed provenance encourages
caution but can overwhelm users. Future systems should investigate
adaptive provenance that dynamically adjusts detail levels based
on context; for example, providing simple source links for straight-
forward questions but surfacing full claim-evidence interfaces for
complex or controversial queries. The interface might default to
simpler cues even in settings requiring greater complexity (per-
haps just the claim coverage bar/indicator), and allow progressive
disclosure of deeper structures on demand. Such adaptive systems
would need to intelligently categorize query complexity, perhaps
using the QASA framework’s distinction between surface, testing,
and deep questions [68], or borrowing from user-centered question
banks of prior XAI work [7, 72, 116].

7.3.2 Scaffolding Critical Thinking Through Progressive Engagement.
Claim-evidence interfaces can potentially act as effective scaffolds

for critical thinking when users have sufficient cognitive resources.
Scholarly information systems should progressively develop users’
verification skills over time through tutorial modes that guide users
through verification on simpler tasks before expecting indepen-
dent critical evaluation on complex syntheses. This learning-based
approach has shown promise in improving appropriate reliance
for AI-assisted decision making [34]. Systems could also provide
verification templates tailored to specific scholarly tasks—another
approach with successful artifacts in improving responsible AI
practices [25, 79]. Finally, ludic design elements [76] could reward
thorough verification behaviors through what Nguyen [90] calls
“epistemic playfulness,” engaging with provenance through game-
like challenges rather than purely for accuracy assessment. How-
ever, ludic elements must carefully encourage genuine exploration
rather than superficial point-scoring.

A key difference between scholarly QA and prior work on AI-
assisted decision-making is that appropriate reliance is concep-
tually different for these settings. Decision-making offers binary or
multi-class constraints, while scholarly QA is open-ended—lacking
ground truth and depending on question and user context. This ne-
cessitates combining designs from prior work with richer workflow
analyses, which we hope future work will tackle.

7.4 Computational Considerations

Performing deep semantic analysis across large documents in real-
time for every user query is computationally expensive, leading to
the high latency that hurt user experience in our study. We consider
some ways in which this can be improved in future iterations of our
computational approach. Our backend demonstrates load-balancing
through offline preprocessing, but we retained LLM processing in
real-time for answer generation and claimmatching (Stages 2 and 3),
creating sequential bottlenecks. Each query required multiple LLM
calls that could not be parallelized due to dependencies—answers
must be generated before claims can be extracted, and paper claims
must be filtered before matching. Future implementations could
address these through aggressive caching (pre-computing com-
mon query patterns), parallel processing (extracting claims from
answer chunks simultaneously), or faster inference infrastructure.
The flexible extraction approach allows strategic selection of meth-
ods: similarity-based extraction for high-volume filtering, LLM-
based extraction for user-selected claims requiring deeper analysis.
This could extend to federated architectures where institutions
pre-process document collections offline, sharing only lightweight
claim indices for real-time matching [14, 82].

8 Limitations and Future Work

Task Realism. This took two forms: (1) participants engaged with
unfamiliar papers within artificial time constraints, rather than
conducting authentic literature searches or working with materials
from their own research; and (2) the 20-30 minute task duration
guidance, that prevented the deep engagement that characterizes
scholarly work in practice. While this standardization was neces-
sary for measuring reliance consistently across participants, it may
have fundamentally altered engagement patterns. Future field stud-
ies should examine PaperTrail’s effectiveness when researchers
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use it for their actual work, with familiar literature and self-directed
questions. Extensions of this experimental setting to include the
writing elements of research reading (e.g., as done to generate work-
flow datasets in [66]), also deserve more attention, but was out of
scope for our user study.

Metrics and Measurement. First, our operationalization of
reliance through edit distance may not fully capture the nuanced
ways participants engaged with LLM assistance. The measure con-
flates various behaviors (from wholesale acceptance to strategic
delegation), and creates a potential confound. Participants might
maintain high textual similarity not from overtrust in the LLM, but
from trust that PaperTrail would alert them to problems requir-
ing intervention. Future work should develop more sophisticated
behavioral measures that distinguish between passive acceptance
and informed delegation. Relatedly, when reporting subjective trust
using the TXAI scale, participants may not even have distinguished
between the interface and the LLM. Component-specific trust mea-
sures will be important for future verification. Finally, we did not
evaluate the quality of participants’ edited texts. While our focus
was to capture behavioral differences, a quality assessment would
help identify whether unsupported claims were removed, omitted
information was added, and if the overall argumentation improved.
Future work should include blind expert evaluation of output qual-
ity to complement behavioral measures.

DesignGeneralizability. PaperTrail instantiates one approach
to claim-evidence provenance within a specific interface paradigm
(three-panel layout with coordinated views). Alternative designs,
such as inline annotations, progressive disclosure, or conversational
verification, might produce different trust-reliance dynamics. Our
findings speak to the value of argument-grounded provenance as a
concept but not to the optimality of our particular implementation.
Similarly, the basis of this design may be approached differently.
Domains within and outside of STEMmay have varying argumenta-
tion conventions, and other scholarly tasks may benefit from differ-
ent provenance approaches. We do not capture rebuttals, warrants,
backings, or qualifiers [119]; or other argumentation styles [123].
Future work should examine how argument-based provenance may
be designed across diverse academic disciplines, argumentation
details, and task types. Additionally, our system assumes source
documents follow a clear claim-evidence structure. If source papers
contain unsupported claims or lack explicit evidentiary reason-
ing, the extraction pipeline may produce incomplete or misleading
provenance information. Users cannot easily distinguish whether
an answer claim is flagged as unsupported due to a genuine LLM er-
ror or due to insufficient coverage in the source corpus—a limitation
that may contribute to the lack of behavior change we observed.

Participant Pool. Our sample of researchers at a single orga-
nization represents a narrow slice of potential users. Scholars in
different disciplines may have varying familiarity with structured
argumentation (e.g., legal scholars vs. bench scientists), different
verification norms, and different time pressures. Students, who are
increasingly using LLMs for literature review [51], face distinct
challenges around domain knowledge that our expert sample did
not capture. Our consistency-oriented setup and findings can speak
to the internal validity of our approach, but we leave this kind of
evaluation of external validity to future work.

Long-term Adaptation. Our single-session study captured ini-
tial reactions to a novel interface. Trust and reliance patterns likely
evolve as users develop mental models of system capabilities and
limitations. Longitudinal deployment might reveal whether the
trust-behavior gap narrows as verification workflows become ha-
bitual, or whether users develop stable patterns of selective engage-
ment with provenance features.

9 Conclusion

We present a novel system, PaperTrail, that provides argument-
grounded provenance information comparing LLM responses in a
scholarly QA setting with claims and evidence from source docu-
ments. Through a within-subjects user study with 26 researchers,
we found that PaperTrail significantly reduced participants’ trust
in LLM outputs compared to standard citation-based provenance.
However, this did not translate into different editing behavior
change—people edited LLM-generated text similarly across con-
ditions. While people valued claim-level verification in principle,
time pressure, system latency, and interface complexity prevented
meaningful engagement with provenance features. Beyond the
interface, our backend architecture for claim-evidence extraction
shows promise as an evaluation framework for the trustworthiness
of LLM scholarly outputs. The gap between recognizing verification
needs and performing verification actions remains a challenge. Our
findings indicate that granular provenance information alone is
insufficient to change behavior when users face the time pressures
and cognitive constraints typical of research settings.
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A Prompts

This appendix provides the prompts and JSON schemas used in
PaperTrail’s Argument Extraction Engine. All LLM-based oper-
ations use Gemini 2.5 Pro with structured JSON output via the
response_json_schema parameter. Similarity-based operations
(Stage 1 evidence retrieval, Stage 3 evidence verification) do not
require prompts.

A.1 Paper-Level Claim Extraction

Pipeline Stage: Stage 1 (Offline Paper Processing)
Purpose: Extracts atomic scientific claims from individual para-

graphs of source documents during offline preprocessing. Applied
to each paragraph to build the structured claim database serving as
the ground-truth knowledge base.

Prompt:

You are an expert research assistant specializing in
extracting structured information from scientific texts.
Your task is to carefully read the provided scientific
paragraph and generate one or more core scientific
claims based solely on the information present in that
paragraph.
A scientific claim must satisfy the following criteria:

(1) Atomic: Focus on a single, specific, and indivisible
assertion, finding, or conclusion. Avoid compound
statements that can be decomposed further.

(2) Verifiable: State something factual whose truthful-
ness can be checked against evidence or data, either
within this paragraph or the broader scientific con-
text.

(3) Faithful:Accurately and precisely reflect themean-
ing and information given in the source paragraph.
Do not introduce outside information or make in-
ferences not directly supported by the text.

(4) Decontextualized: Be understandable as a stan-
dalone statement, requiringminimal or no surround-
ing text from the original paper to grasp its mean-
ing.

(5) Declarative: Be a clear statement or assertion, not
a question, hypothesis phrased as a question, or a
description of methods or procedures.

Based on these principles, transform the following
paragraph into zero or more distinct scientific claims.
{FEW-SHOT EXAMPLES: 10 paragraph-claims pairs
randomly sampled from SciClaimHunt [61]}
Paragraph: {PARAGRAPH}

JSON Schema:

{
"type": "array",
"items": {

"type": "object",
"properties ": {

"claim": {

https://arxiv.org/abs/2508.15396
https://arxiv.org/abs/2508.15396
https://www.semanticscholar.org/faq/how-are-questions-answered-by-paper-question-answering
https://www.semanticscholar.org/faq/how-are-questions-answered-by-paper-question-answering
https://doi.org/10.1007/978-3-030-92679-3_10-1
https://doi.org/10.1007/978-3-030-92679-3_10-1
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1145/3532106.3533483
https://doi.org/10.1145/3706598.3714082
https://doi.org/10.1109/VAST.2007.4389006
https://doi.org/10.1109/VAST.2007.4389006
https://blog.google/products/search/ai-overviews-search-october-2024/
https://blog.google/products/search/ai-overviews-search-october-2024/
https://doi.org/10.18653/v1/2022.findings-emnlp.347
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/345513.345271
https://doi.org/10.1145/3531146.3533088
https://doi.org/10.1145/3544548.3581318
https://doi.org/10.1007/s10115-024-02212-5
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"type": "string",
"description ": "A single , atomic

scientific claim"
}

},
"required ": ["claim"]

}
}

Note: Evidence retrieval in Stage 1 uses similarity-based extrac-
tion with a cosine similarity threshold of 0.75 and does not require
an LLM prompt.

A.2 Answer Generation

Pipeline Stage: Stage 2 (Real-Time Answer Processing)
Purpose:Generates responses to user questions during the schol-

arly QA session. The answerer LLM receives source documents as
context alongside the query, similar to document-grounded ques-
tion answering where source documents are provided as context.
Citation tags enable sentence-level source attribution for the base-
line condition and are removed before displaying responses to
users.

Prompt:

You are an advanced AI research assistant designed to
assist users with scholarly literature analysis and ques-
tion answering. Your primary function is to provide
accurate and insightful answers to questions based
on one or more scholarly papers provided to you.
The user is performing an editing task and may refer
to text they are editing. This text and a description of
the editing task will be provided. The conversation
history will also be provided if it exists.
In your response, use tags around each sentence to
indicate which paper(s) are being referenced. These
tags will be removed in post-processing before the an-
swer is shown to the user. Format: <Author et al.,
year> sentence </Author et al., year>. For sen-
tences drawing on multiple papers, separate citations
with semicolons: <Author et al., year;Author
et al., year>.
Provide your answer in 300 words or fewer. Do not
use formatting such as bullet points or headers.
Papers: {PAPER_CONTENTS}
Task description: {TASK_DESCRIPTION}
Text being edited: {EDITOR_TEXT}
Conversationhistory: {CONVERSATION_HISTORY}
Question: {USER_QUESTION}

A.3 Answer-Level Claim and Evidence

Extraction

Pipeline Stage: Stage 2 (Real-Time Answer Processing)
Purpose: Decomposes LLM-generated answers into discrete

claims and supporting evidence. Uses the same claim criteria as
paper-level extraction to ensure consistency in matching. Extracts
both claims and evidence in a single pass since answers are shorter
than full papers.

Prompt:

You are an expert research assistant specializing in
extracting structured information from scientific texts.
Your task is to carefully read the provided text and
decompose it into discrete claims and their supporting
evidence.
A claim must satisfy the following criteria:

(1) Atomic: Focus on a single, specific, and indivisible
assertion. Avoid compound statements that can be
decomposed further.

(2) Verifiable: State something factual whose truthful-
ness can be checked against evidence or data.

(3) Faithful: Accurately reflect the meaning in the
source text. Do not introduce outside information.

(4) Decontextualized: Be understandable as a stan-
dalone statement.

(5) Declarative: Be a clear statement or assertion, not
a question or description of methods.

For each claim identified, extract the exact text spans
from the input that express the claim and any text
spans that serve as supporting evidence. Text spans
must match the original input exactly to enable pre-
cise highlighting in the user interface.
{FEW-SHOTEXAMPLES: text-to-claims-and-evidence
pairs demonstrating the expected output format}
Text: {ANSWER_TEXT}

JSON Schema:

{
"type": "array",
"items": {

"type": "object",
"properties ": {

"claim": {
"type": "string",
"description ": "A single , atomic claim

from the answer"
},
"claim_texts ": {

"type": "array",
"items": {"type": "string"},
"description ": "Exact text spans

expressing this claim"
},
"evidence_texts ": {

"type": "array",
"items": {"type": "string"},
"description ": "Exact text spans

supporting this claim"
}

},
"required ": ["claim", "claim_texts", "

evidence_texts "]
}

}

A.4 Relevant Claims Selection

Pipeline Stage: Stage 3 (Real-Time Claim Matching)
Purpose: Filters the corpus of pre-extracted paper claims to iden-

tify those relevant to the user’s question. Operates on candidates
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pre-filtered by similarity-based retrieval (using cosine similarity
between SPECTER embeddings), applying LLM-based semantic
reasoning to select the most pertinent claims.

Prompt:

You are provided with a set of scientific claims ex-
tracted from scholarly papers and a user’s question
about those papers. Your task is to identify which
claims are relevant to answering the question.
A claim is relevant if it:
• Directly addresses the question
• Provides necessary background information
• Contains factual information that would contribute
to a complete answer

Each claim is accompanied by a numerical ID. Return
only the IDs of relevant claims.
Question: {USER_QUESTION}
Claims: {CLAIM_LIST_WITH_IDS}

JSON Schema:

{
"type": "array",
"items ": {

"type": "integer",
"description ": "ID of a relevant claim"

}
}

A.5 Relevant Evidence Selection

Pipeline Stage: Stage 3 (Real-Time Claim Matching)
Purpose: Selects the most relevant evidence passages for each

claim identified in the previous step. For each relevant claim, its
supporting evidence forms a sub-corpus that is first filtered by
similarity-based retrieval, then the LLM performs final selection of
the most pertinent passages.

Prompt:

You are provided with a set of evidence passages as-
sociated with a scientific claim, along with a user’s
question. Your task is to identify which evidence pas-
sages are most relevant in the context of the question.
Evidence is relevant if it:
• Directly supports or substantiates the claim
• Provides data, results, or reasoning that validates
the claim

• Contains contextual information necessary to un-
derstand the claim in relation to the question

Each evidence passage is accompanied by a numerical
ID. Return only the IDs of the most relevant evidence
passages.
Question: {USER_QUESTION}
Claim: {CLAIM_TEXT}
Evidence passages: {EVIDENCE_LIST_WITH_IDS}

JSON Schema:

{
"type": "array",
"items ": {

"type": "integer",

"description ": "ID of a relevant evidence
passage"

}
}

A.6 Claim-to-Claim Matching

Pipeline Stage: Stage 3 (Real-Time Claim Matching)
Purpose: Identifies semantic equivalence between claims ex-

tracted from the LLM-generated answer and claims from the source
papers. The output determines which answer claims are supported
by the source literature (displayed as “Claims included in answer”)
and which lack grounding (flagged for user attention).

Prompt:

You are provided with two sets of claims: (1) claims ex-
tracted from an LLM-generated answer, and (2) claims
extracted from source scholarly papers. Your task is to
identify which answer claims are semantically equiv-
alent to which paper claims.
Two claims are semantically equivalent if they express
the same core assertion, even if worded differently. Mi-
nor differences in phrasing, specificity, or elaboration
are acceptable provided the fundamental meaning is
preserved. Do not match claims that are merely topi-
cally related but make different assertions.
For each answer claim that has a match in the paper
claims, return the answer claim ID paired with the
ID(s) of the matching paper claim(s). Omit answer
claims that lack a clear match.
Answer claims: {ANSWER_CLAIMS_WITH_IDS}
Paper claims: {PAPER_CLAIMS_WITH_IDS}

JSON Schema:

{
"type": "array",
"items": {

"type": "object",
"properties ": {

"answer_claim_id ": {
"type": "integer",
"description ": "ID of the answer claim

"
},
"paper_claim_ids ": {

"type": "array",
"items": {"type": "integer"},
"description ": "IDs of semantically

equivalent paper claims"
}

},
"required ": [" answer_claim_id", "

paper_claim_ids "]
}

}

Note: Evidence verification in Stage 3 uses cosine similarity with
a threshold of < 0.55 to flag potentially unsupported evidence and
does not require an LLM prompt.
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